These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 21287247)
21. A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Minagar S; Berndt CC; Wang J; Ivanova E; Wen C Acta Biomater; 2012 Aug; 8(8):2875-88. PubMed ID: 22542885 [TBL] [Abstract][Full Text] [Related]
22. TiO2-WO3 composite nanotubes by alloy anodization: growth and enhanced electrochromic properties. Nah YC; Ghicov A; Kim D; Berger S; Schmuki P J Am Chem Soc; 2008 Dec; 130(48):16154-5. PubMed ID: 18998674 [TBL] [Abstract][Full Text] [Related]
24. Structural, physical, chemical, and biological surface characterization of thermomechanically treated Ti-Nb-based alloys for bone implants. Sheremetyev V; Petrzhik M; Zhukova Y; Kazakbiev A; Arkhipova A; Moisenovich M; Prokoshkin S; Brailovski V J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):647-662. PubMed ID: 31121090 [TBL] [Abstract][Full Text] [Related]
25. Electrochemical behavior of near-beta titanium biomedical alloys in phosphate buffer saline solution. Dalmau A; Guiñón Pina V; Devesa F; Amigó V; Igual Muñoz A Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():55-62. PubMed ID: 25579896 [TBL] [Abstract][Full Text] [Related]
26. Mechanical, physical, and chemical characterization of Ti-35Nb-5Zr and Ti-35Nb-10Zr casting alloys. Ribeiro AL; Junior RC; Cardoso FF; Filho RB; Vaz LG J Mater Sci Mater Med; 2009 Aug; 20(8):1629-36. PubMed ID: 19337820 [TBL] [Abstract][Full Text] [Related]
27. Gentamicin-Eluting Titanium Dioxide Nanotubes Grown on the Ultrafine-Grained Titanium. Nemati SH; Hadjizadeh A AAPS PharmSciTech; 2017 Aug; 18(6):2180-2187. PubMed ID: 28063103 [TBL] [Abstract][Full Text] [Related]
28. Superelastic properties of biomedical (Ti-Zr)-Mo-Sn alloys. Ijaz MF; Kim HY; Hosoda H; Miyazaki S Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():11-20. PubMed ID: 25579891 [TBL] [Abstract][Full Text] [Related]
29. Characterization and preosteoblastic behavior of hydroxyapatite-deposited nanotube surface of titanium prepared by anodization coupled with alternative immersion method. Gu YX; Du J; Zhao JM; Si MS; Mo JJ; Lai HC J Biomed Mater Res B Appl Biomater; 2012 Nov; 100(8):2122-30. PubMed ID: 22847998 [TBL] [Abstract][Full Text] [Related]
30. A new titanium based alloy Ti-27Nb-13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial. Mendes MW; Ágreda CG; Bressiani AH; Bressiani JC Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():671-7. PubMed ID: 27040264 [TBL] [Abstract][Full Text] [Related]
31. Fabrication of highly ordered TiO2 nanotube arrays via anodization of Ti-6Al-4V alloy sheet. Wang L; Zhao TT; Zhang Z; Li G J Nanosci Nanotechnol; 2010 Dec; 10(12):8312-21. PubMed ID: 21121333 [TBL] [Abstract][Full Text] [Related]
32. RGD peptide immobilized on TiO2 nanotubes for increased bone marrow stromal cells adhesion and osteogenic gene expression. Cao X; Yu WQ; Qiu J; Zhao YF; Zhang YL; Zhang FQ J Mater Sci Mater Med; 2012 Feb; 23(2):527-36. PubMed ID: 22143905 [TBL] [Abstract][Full Text] [Related]
33. Proteome analysis of the salivary pellicle formed on titanium alloys containing niobium and zirconium. Pantaroto HN; Amorim KP; Matozinho Cordeiro J; Souza JGS; Ricomini-Filho AP; Rangel EC; Ribeiro ALR; Vaz LG; Barão VAR Biofouling; 2019 Feb; 35(2):173-186. PubMed ID: 30935231 [TBL] [Abstract][Full Text] [Related]
34. Mechanical degradation of TiO2 nanotubes with and without nanoparticulate silver coating. Shivaram A; Bose S; Bandyopadhyay A J Mech Behav Biomed Mater; 2016 Jun; 59():508-518. PubMed ID: 27017285 [TBL] [Abstract][Full Text] [Related]
35. The Control of Nanotube Morphology Using Various Factors for Dental Implant. Kim ES; Jeong YH; Choe HC J Nanosci Nanotechnol; 2015 Jan; 15(1):181-4. PubMed ID: 26328325 [TBL] [Abstract][Full Text] [Related]
36. Spark anodization of titanium-zirconium alloy: surface characterization and bioactivity assessment. Sharma A; McQuillan AJ; Sharma LA; Waddell JN; Shibata Y; Duncan WJ J Mater Sci Mater Med; 2015 Aug; 26(8):221. PubMed ID: 26260697 [TBL] [Abstract][Full Text] [Related]
37. Cell response and bioactivity of titania-zirconia-zirconium titanate nanotubes with different nanoscale topographies fabricated in a non-aqueous electrolyte. Minagar S; Li Y; Berndt CC; Wen C Biomater Sci; 2015 Apr; 3(4):636-44. PubMed ID: 26222424 [TBL] [Abstract][Full Text] [Related]
38. Effect of an amorphous titania nanotubes coating on the fatigue and corrosion behaviors of the biomedical Ti-6Al-4V and Ti-6Al-7Nb alloys. Campanelli LC; Bortolan CC; da Silva PSCP; Bolfarini C; Oliveira NTC J Mech Behav Biomed Mater; 2017 Jan; 65():542-551. PubMed ID: 27697716 [TBL] [Abstract][Full Text] [Related]
39. Nanoengineered drug-releasing Ti wires as an alternative for local delivery of chemotherapeutics in the brain. Gulati K; Aw MS; Losic D Int J Nanomedicine; 2012; 7():2069-76. PubMed ID: 22619543 [TBL] [Abstract][Full Text] [Related]
40. Cell response of anodized nanotubes on titanium and titanium alloys. Minagar S; Wang J; Berndt CC; Ivanova EP; Wen C J Biomed Mater Res A; 2013 Sep; 101(9):2726-39. PubMed ID: 23436766 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]