These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 21287398)

  • 1. Spermidine delays eye lens opacification in vitro by suppressing transglutaminase-catalyzed crystallin cross-linking.
    Lentini A; Tabolacci C; Mattioli P; Provenzano B; Beninati S
    Protein J; 2011 Feb; 30(2):109-14. PubMed ID: 21287398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyamine Oxidase Is Involved in Spermidine Reduction of Transglutaminase Type 2-Catalyzed
    Mischiati C; Feriotto G; Tabolacci C; Domenici F; Melino S; Borromeo I; Forni C; De Martino A; Beninati S
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32751462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transglutaminase-mediated cross-linking of alpha-crystallin: structural and functional consequences.
    Shridas P; Sharma Y; Balasubramanian D
    FEBS Lett; 2001 Jun; 499(3):245-50. PubMed ID: 11423125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acceptor-donor relationships in the transglutaminase-mediated cross-linking of lens beta-crystallin subunits.
    Velasco PT; Lorand L
    Biochemistry; 1987 Jul; 26(15):4629-34. PubMed ID: 2889465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A human lens model of cortical cataract: Ca2+-induced protein loss, vimentin cleavage and opacification.
    Sanderson J; Marcantonio JM; Duncan G
    Invest Ophthalmol Vis Sci; 2000 Jul; 41(8):2255-61. PubMed ID: 10892870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel inhibitors against the transglutaminase-catalysed crosslinking of lens proteins.
    Lorand L; Stern AM; Velasco PT
    Exp Eye Res; 1998 May; 66(5):531-6. PubMed ID: 9628800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spermine induces cataract and 43-kDa protein that binds spermine possibly participates in the cataract formation.
    Maekawa S; Kataoka M; Uji Y; Hibasami H; Nakashima K
    Biochim Biophys Acta; 2003 Jan; 1637(1):70-4. PubMed ID: 12527409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallin proteins in lenses of hereditary cataractous rat, ICR/f.
    Takeuchi N; Kamei A
    Biol Pharm Bull; 2000 Mar; 23(3):283-90. PubMed ID: 10726880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of purified lens transglutaminase and regulation of its transamidase/crosslinking activity by GTP.
    Murthy SN; Velasco PT; Lorand L
    Exp Eye Res; 1998 Sep; 67(3):273-81. PubMed ID: 9778408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium-induced opacification and loss of protein in the organ-cultured bovine lens.
    Marcantonio JM; Duncan G; Rink H
    Exp Eye Res; 1986 Jun; 42(6):617-30. PubMed ID: 3087764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-translational modification of glutamine and lysine residues of HIV-1 aspartyl protease by transglutaminase increases its catalytic activity.
    Lentini A; Tabolacci C; Melino S; Provenzano B; Beninati S
    Biochem Biophys Res Commun; 2010 Mar; 393(3):546-50. PubMed ID: 20170637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three distinct stages of lens opacification in transgenic mice expressing the HIV-1 protease.
    Tumminia SJ; Clark JI; Richiert DM; Mitton KP; Duglas-Tabor Y; Kowalak JA; Garland DL; Russell P
    Exp Eye Res; 2001 Feb; 72(2):115-21. PubMed ID: 11161727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transglutaminase-mediated cross-linking of proteins and cell ageing: the erythrocyte and lens models.
    Lorand L
    Adv Exp Med Biol; 1988; 231():79-94. PubMed ID: 2901196
    [No Abstract]   [Full Text] [Related]  

  • 14. Lens transglutaminase and cataract formation.
    Lorand L; Hsu LK; Siefring GE; Rafferty NS
    Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1356-60. PubMed ID: 6112745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [New regulatory protein isolated from the bovine eye lens and its action on the cataract development in rat in vitro].
    Krasnov MS; Gurmizov EP; Iamskova VP; Gundorova RA; Iamskov IA
    Vestn Oftalmol; 2005; 121(1):37-9. PubMed ID: 15759848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hippocampal polyamine levels and transglutaminase activity are paralleling spatial memory retrieval in the C57BL/6J mouse.
    Tiboldi A; Lentini A; Provenzano B; Tabolacci C; Höger H; Beninati S; Lubec G
    Hippocampus; 2012 May; 22(5):1068-74. PubMed ID: 22467251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drevogenin D prevents selenite-induced oxidative stress and calpain activation in cultured rat lens.
    Biju PG; Rooban BN; Lija Y; Devi VG; Sahasranamam V; Abraham A
    Mol Vis; 2007 Jul; 13():1121-9. PubMed ID: 17653057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of beta-crystallin cross-linking in the Ca2+-treated lens.
    Lorand L; Conrad SM; Velasco PT
    Invest Ophthalmol Vis Sci; 1987 Jul; 28(7):1218-22. PubMed ID: 3596999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transglutaminase activity in normal human lenses and in senile cataracts.
    Hidasi V; Muszbek L
    Ann Clin Lab Sci; 1995; 25(3):236-40. PubMed ID: 7605105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opacification of gamma-crystallin solutions from calf lens in relation to cold cataract formation.
    Siezen RJ; Fisch MR; Slingsby C; Benedek GB
    Proc Natl Acad Sci U S A; 1985 Mar; 82(6):1701-5. PubMed ID: 3856852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.