These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Brownian motion and Einstein relation for migration of coffee particles in coffee suspensions. Lin CY; Zhou W; Hu CT; Yang F; Lee S J Sci Food Agric; 2019 Jun; 99(8):3950-3956. PubMed ID: 30706475 [TBL] [Abstract][Full Text] [Related]
3. Brownian motion of a particle with arbitrary shape. Cichocki B; Ekiel-Jeżewska ML; Wajnryb E J Chem Phys; 2015 Jun; 142(21):214902. PubMed ID: 26049519 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous sizing and electrophoretic mobility measurement of sub-micron particles using Brownian motion. Palanisami A; Miller JH Electrophoresis; 2010 Oct; 31(21):3613-8. PubMed ID: 20882556 [TBL] [Abstract][Full Text] [Related]
5. Efficient lattice Boltzmann algorithm for Brownian suspensions. Mynam M; Sunthar P; Ansumali S Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1944):2237-45. PubMed ID: 21536570 [TBL] [Abstract][Full Text] [Related]
7. Micromechanical mapping of live cells by multiple-particle-tracking microrheology. Tseng Y; Kole TP; Wirtz D Biophys J; 2002 Dec; 83(6):3162-76. PubMed ID: 12496086 [TBL] [Abstract][Full Text] [Related]
8. The aggregation behaviour of protein-coated particles: a light scattering study. Tirado-Miranda M; Schmitt A; Callejas-Fernández J; Fernández-Barbero A Eur Biophys J; 2003 May; 32(2):128-36. PubMed ID: 12734701 [TBL] [Abstract][Full Text] [Related]
9. Bragg scattering and Brownian motion dynamics in optically induced crystals of submicron particles. Sapiro RE; Slama BN; Raithel G Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052311. PubMed ID: 23767544 [TBL] [Abstract][Full Text] [Related]
10. Measurement of Average Aggregate Density by Sedimentation and Brownian Motion Analysis. Cavicchi RE; King J; Ripple DC J Pharm Sci; 2018 May; 107(5):1304-1312. PubMed ID: 29409841 [TBL] [Abstract][Full Text] [Related]
11. Measuring runoff-suspended solids using an improved turbidometer method. Ginting D; Mamo M J Environ Qual; 2006; 35(3):815-23. PubMed ID: 16585624 [TBL] [Abstract][Full Text] [Related]
12. Light scattering from suspensions of membrane fragments derived from sonication of beef heart mitochondria. Storey BT; Lee CP; Papa S; Rosen SG; Simon G Biochemistry; 1976 Feb; 15(4):928-33. PubMed ID: 2291 [TBL] [Abstract][Full Text] [Related]
13. Rapid sampling of stochastic displacements in Brownian dynamics simulations with stresslet constraints. Fiore AM; Swan JW J Chem Phys; 2018 Jan; 148(4):044114. PubMed ID: 29390810 [TBL] [Abstract][Full Text] [Related]
14. Properties of poly(styrene/alpha-tert-butoxy-omega-vinylbenzyl-polyglycidol) microspheres suspended in water. Effect of sodium chloride and temperature on particle diameters and electrophoretic mobility. Basinska T; Slomkowski S; Kazmierski S; Chehimi MM Langmuir; 2008 Aug; 24(16):8465-72. PubMed ID: 18630979 [TBL] [Abstract][Full Text] [Related]
15. Motion analysis of self-propelled Pt-silica particles in hydrogen peroxide solutions. Ke H; Ye S; Carroll RL; Showalter K J Phys Chem A; 2010 May; 114(17):5462-7. PubMed ID: 20387839 [TBL] [Abstract][Full Text] [Related]
16. Experimental system for one-dimensional rotational brownian motion. McNaughton BH; Kinnunen P; Shlomi M; Cionca C; Pei SN; Clarke R; Argyrakis P; Kopelman R J Phys Chem B; 2011 May; 115(18):5212-8. PubMed ID: 21500841 [TBL] [Abstract][Full Text] [Related]
18. Influence of particles on the transition to turbulence in pipe flow. Matas JP; Morris JF; Guazzelli E Philos Trans A Math Phys Eng Sci; 2003 May; 361(1806):911-9. PubMed ID: 12804221 [TBL] [Abstract][Full Text] [Related]
19. Collective motion of microspheres in suspensions observed by phase-mode dynamic ultrasound scattering technique. Nagao A; Norisuye T; Yawada T; Kohyama M; Tran-Cong-Miyata Q Ultrasonics; 2012 Jul; 52(5):628-35. PubMed ID: 22297094 [TBL] [Abstract][Full Text] [Related]