These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 21287829)

  • 21. Enhanced derivation of osteogenic cells from murine embryonic stem cells after treatment with ionic dissolution products of 58S bioactive sol-gel glass.
    Bielby RC; Pryce RS; Hench LL; Polak JM
    Tissue Eng; 2005; 11(3-4):479-88. PubMed ID: 15869426
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bone tissue engineering: current strategies and techniques--part I: Scaffolds.
    Szpalski C; Wetterau M; Barr J; Warren SM
    Tissue Eng Part B Rev; 2012 Aug; 18(4):246-57. PubMed ID: 22029448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of endothelial differentiated adipose-derived stem cells on vascularity and osteogenesis in poly(D,L-lactide) scaffolds in vivo.
    Sahar DE; Walker JA; Wang HT; Stephenson SM; Shah AR; Krishnegowda NK; Wenke JC
    J Craniofac Surg; 2012 May; 23(3):913-8. PubMed ID: 22627404
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An update on recent advances in bone regeneration.
    Soucacos PN; Johnson EO; Babis G
    Injury; 2008 Sep; 39 Suppl 2():S1-4. PubMed ID: 18804569
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells.
    Jones JR; Tsigkou O; Coates EE; Stevens MM; Polak JM; Hench LL
    Biomaterials; 2007 Mar; 28(9):1653-63. PubMed ID: 17175022
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanisms of ectopic bone formation by human osteoprogenitor cells on CaP biomaterial carriers.
    Chai YC; Roberts SJ; Desmet E; Kerckhofs G; van Gastel N; Geris L; Carmeliet G; Schrooten J; Luyten FP
    Biomaterials; 2012 Apr; 33(11):3127-42. PubMed ID: 22269651
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanobiology of bone healing and regeneration: in vivo models.
    Epari DR; Duda GN; Thompson MS
    Proc Inst Mech Eng H; 2010 Dec; 224(12):1543-53. PubMed ID: 21287837
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human bone marrow stromal cells: In vitro expansion and differentiation for bone engineering.
    Ciapetti G; Ambrosio L; Marletta G; Baldini N; Giunti A
    Biomaterials; 2006 Dec; 27(36):6150-60. PubMed ID: 16965811
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vitro bone growth responds to local mechanical strain in three-dimensional polymer scaffolds.
    Baas E; Kuiper JH; Yang Y; Wood MA; El Haj AJ
    J Biomech; 2010 Mar; 43(4):733-9. PubMed ID: 19942222
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computer-aided approach for customized cell-based defect reconstruction.
    Meyer U; Neunzehn J; Wiesmann HP
    Methods Mol Biol; 2012; 868():27-43. PubMed ID: 22692602
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bone Tissue Engineering Challenges in Oral & Maxillofacial Surgery.
    Smith BT; Shum J; Wong M; Mikos AG; Young S
    Adv Exp Med Biol; 2015; 881():57-78. PubMed ID: 26545744
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: In vitro and in vivo studies.
    Koç A; Finkenzeller G; Elçin AE; Stark GB; Elçin YM
    J Biomater Appl; 2014 Nov; 29(5):748-60. PubMed ID: 25062670
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of bioactive glasses on bone marrow stromal cells differentiation.
    Bosetti M; Cannas M
    Biomaterials; 2005 Jun; 26(18):3873-9. PubMed ID: 15626435
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Key role of the expression of bone morphogenetic proteins in increasing the osteogenic activity of osteoblast-like cells exposed to shock waves and seeded on bioactive glass-ceramic scaffolds for bone tissue engineering.
    Muzio G; Martinasso G; Baino F; Frairia R; Vitale-Brovarone C; Canuto RA
    J Biomater Appl; 2014 Nov; 29(5):728-36. PubMed ID: 24994880
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overcoming physical constraints in bone engineering: 'the importance of being vascularized'.
    Genova T; Munaron L; Carossa S; Mussano F
    J Biomater Appl; 2016 Feb; 30(7):940-51. PubMed ID: 26637441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ectopic bone formation from mandibular osteoblasts cultured in a novel human serum-derived albumin scaffold.
    Gallego L; Junquera L; Meana A; Alvarez-Viejo M; Fresno M
    J Biomater Appl; 2010 Nov; 25(4):367-81. PubMed ID: 20008085
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering.
    Chen G; Dong C; Yang L; Lv Y
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):15790-802. PubMed ID: 26151287
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tissue engineering for bone regeneration using differentiated alveolar bone cells in collagen scaffolds.
    Xiao Y; Qian H; Young WG; Bartold PM
    Tissue Eng; 2003 Dec; 9(6):1167-77. PubMed ID: 14670104
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of autologous bone marrow stromal cells differentiated on scaffolds for canine tibial bone reconstruction.
    Özdal-Kurt F; Tuğlu I; Vatansever HS; Tong S; Deliloğlu-Gürhan SI
    Biotech Histochem; 2015; 90(7):516-28. PubMed ID: 25994048
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.