These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 21287835)

  • 1. Bioreactors for bone tissue engineering.
    El Haj AJ; Cartmell SH
    Proc Inst Mech Eng H; 2010 Dec; 224(12):1523-32. PubMed ID: 21287835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of perfusion culture system improves in vitro and in vivo osteogenesis of bone marrow-derived osteoblastic cells in porous ceramic materials.
    Wang Y; Uemura T; Dong J; Kojima H; Tanaka J; Tateishi T
    Tissue Eng; 2003 Dec; 9(6):1205-14. PubMed ID: 14670108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of medium perfusion rate on cell-seeded three-dimensional bone constructs in vitro.
    Cartmell SH; Porter BD; García AJ; Guldberg RE
    Tissue Eng; 2003 Dec; 9(6):1197-203. PubMed ID: 14670107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro culture of large bone substitutes in a new bioreactor: importance of the flow direction.
    Olivier V; Hivart P; Descamps M; Hardouin P
    Biomed Mater; 2007 Sep; 2(3):174-80. PubMed ID: 18458469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of osteoblastic cells in a microfluidic environment.
    Leclerc E; David B; Griscom L; Lepioufle B; Fujii T; Layrolle P; Legallaisa C
    Biomaterials; 2006 Feb; 27(4):586-95. PubMed ID: 16026825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A three-dimensional tissue culture model of bone formation utilizing rotational co-culture of human adult osteoblasts and osteoclasts.
    Clarke MS; Sundaresan A; Vanderburg CR; Banigan MG; Pellis NR
    Acta Biomater; 2013 Aug; 9(8):7908-16. PubMed ID: 23664885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Challenges in engineering large customized bone constructs.
    Forrestal DP; Klein TJ; Woodruff MA
    Biotechnol Bioeng; 2017 Jun; 114(6):1129-1139. PubMed ID: 27858993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new bioreactor for the controlled application of complex mechanical stimuli for cartilage tissue engineering.
    Laganà K; Moretti M; Dubini G; Raimondi MT
    Proc Inst Mech Eng H; 2008 Jul; 222(5):705-15. PubMed ID: 18756689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased rate of chondrocyte aggregation in a wavy-walled bioreactor.
    Bueno EM; Bilgen B; Carrier RL; Barabino GA
    Biotechnol Bioeng; 2004 Dec; 88(6):767-77. PubMed ID: 15515164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoblasts in bone tissue engineering.
    Jayakumar P; Di Silvio L
    Proc Inst Mech Eng H; 2010 Dec; 224(12):1415-40. PubMed ID: 21287829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Location of scaffolds in bioreactors modulates the hydrodynamic environment experienced by engineered tissues.
    Bilgen B; Barabino GA
    Biotechnol Bioeng; 2007 Sep; 98(1):282-94. PubMed ID: 17318906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue engineered humanized bone supports human hematopoiesis in vivo.
    Holzapfel BM; Hutmacher DW; Nowlan B; Barbier V; Thibaudeau L; Theodoropoulos C; Hooper JD; Loessner D; Clements JA; Russell PJ; Pettit AR; Winkler IG; Levesque JP
    Biomaterials; 2015 Aug; 61():103-14. PubMed ID: 26001075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors.
    Marolt D; Augst A; Freed LE; Vepari C; Fajardo R; Patel N; Gray M; Farley M; Kaplan D; Vunjak-Novakovic G
    Biomaterials; 2006 Dec; 27(36):6138-49. PubMed ID: 16895736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel perfusion bioreactor providing a homogenous milieu for tissue regeneration.
    Dvir T; Benishti N; Shachar M; Cohen S
    Tissue Eng; 2006 Oct; 12(10):2843-52. PubMed ID: 17518653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human embryonic stem cell-derived mesodermal progenitors display substantially increased tissue formation compared to human mesenchymal stem cells under dynamic culture conditions in a packed bed/column bioreactor.
    de Peppo GM; Sladkova M; Sjövall P; Palmquist A; Oudina K; Hyllner J; Thomsen P; Petite H; Karlsson C
    Tissue Eng Part A; 2013 Jan; 19(1-2):175-87. PubMed ID: 22924642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-lapsed imaging of nanocomposite scaffolds reveals increased bone formation in dynamic compression bioreactors.
    Schädli GN; Vetsch JR; Baumann RP; de Leeuw AM; Wehrle E; Rubert M; Müller R
    Commun Biol; 2021 Jan; 4(1):110. PubMed ID: 33495540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deformation simulation of cells seeded on a collagen-GAG scaffold in a flow perfusion bioreactor using a sequential 3D CFD-elastostatics model.
    Jungreuthmayer C; Jaasma MJ; Al-Munajjed AA; Zanghellini J; Kelly DJ; O'Brien FJ
    Med Eng Phys; 2009 May; 31(4):420-7. PubMed ID: 19109048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of perfusion bioreactors in bone tissue engineering.
    Gaspar DA; Gomide V; Monteiro FJ
    Biomatter; 2012; 2(4):167-75. PubMed ID: 23507883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering.
    Chen G; Dong C; Yang L; Lv Y
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):15790-802. PubMed ID: 26151287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational fluid dynamics for improved bioreactor design and 3D culture.
    Hutmacher DW; Singh H
    Trends Biotechnol; 2008 Apr; 26(4):166-72. PubMed ID: 18261813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.