These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 21288036)

  • 61. Structural and rheological properties of meibomian lipid.
    Rosenfeld L; Cerretani C; Leiske DL; Toney MF; Radke CJ; Fuller GG
    Invest Ophthalmol Vis Sci; 2013 Apr; 54(4):2720-32. PubMed ID: 23513065
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Small-strain dynamic rheology of food protein networks.
    Tunick MH
    J Agric Food Chem; 2011 Mar; 59(5):1481-6. PubMed ID: 20604509
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Stability of a concentrated oil-in-water emulsion model prepared using palm olein-based diacylglycerol/virgin coconut oil blends: Effects of the rheological properties, droplet size distribution and microstructure.
    Ng SP; Lai OM; Abas F; Lim HK; Tan CP
    Food Res Int; 2014 Oct; 64():919-930. PubMed ID: 30011735
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Shear-induced topology changes in liquid crystals of the soybean lecithin/DDAB/water system.
    Montalvo G; Valiente M; Khan A
    Langmuir; 2007 Oct; 23(21):10518-24. PubMed ID: 17867714
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Gelation on demand using switchable double emulsions: A potential strategy for the in situ immobilization of organic contaminants.
    Lamont K; Pensini E; Marangoni AG
    J Colloid Interface Sci; 2020 Mar; 562():470-482. PubMed ID: 31785939
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A study of microemulsions as prolonged-release injectables through in-situ phase transition.
    Wu Z; Alany RG; Tawfeek N; Falconer J; Zhang W; Hassan IM; Rutland M; Svirskis D
    J Control Release; 2014 Jan; 174():188-94. PubMed ID: 24316265
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Droplet size scaling of water-in-oil emulsions under turbulent flow.
    Boxall JA; Koh CA; Sloan ED; Sum AK; Wu DT
    Langmuir; 2012 Jan; 28(1):104-10. PubMed ID: 22047095
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Synergetic effect based gel-emulsions and their utilization for the template preparation of porous polymeric monoliths.
    Miao Q; Chen X; Liu L; Peng J; Fang Y
    Langmuir; 2014 Nov; 30(45):13680-8. PubMed ID: 25338107
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Rheology of twist-grain-boundary-A liquid crystals.
    Sahoo R; Ananthaiah J; Dabrowski R; Dhara S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012506. PubMed ID: 25122323
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Oil-in-Water Emulsions Stabilized by Carboxymethylated Lignins: Properties and Energy Prospects.
    Li S; Willoughby JA; Rojas OJ
    ChemSusChem; 2016 Sep; 9(17):2460-9. PubMed ID: 27491347
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Rheology of nanocrystalline cellulose aqueous suspensions.
    Shafiei-Sabet S; Hamad WY; Hatzikiriakos SG
    Langmuir; 2012 Dec; 28(49):17124-33. PubMed ID: 23146090
    [TBL] [Abstract][Full Text] [Related]  

  • 72. High acyl gellan as an emulsion stabilizer.
    Vilela JA; da Cunha RL
    Carbohydr Polym; 2016 Mar; 139():115-24. PubMed ID: 26794954
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Gel-like elasticity in glass-forming side-chain liquid-crystal polymers.
    Pozo O; Collin D; Finkelmann H; Rogez D; Martinoty P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031801. PubMed ID: 19905137
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Emulsified microemulsions and oil-containing liquid crystalline phases.
    Yaghmur A; de Campo L; Sagalowicz L; Leser ME; Glatter O
    Langmuir; 2005 Jan; 21(2):569-77. PubMed ID: 15641825
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Rheological characterization of bioadhesive, antimicrobial, semisolids designed for the treatment of periodontal diseases: transient and dynamic viscoelastic and continuous shear analysis.
    Jones DS; Brown AF; Woolfson AD
    J Pharm Sci; 2001 Dec; 90(12):1978-90. PubMed ID: 11745757
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Thickening properties and emulsification mechanisms of new derivatives of polysaccharides in aqueous solution.
    Akiyama E; Kashimoto A; Fukuda K; Hotta H; Suzuki T; Kitsuki T
    J Colloid Interface Sci; 2005 Feb; 282(2):448-57. PubMed ID: 15589552
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Rheological Behavior of Fluorinated Highly Concentrated Reverse Emulsions with Temperature.
    Langenfeld A; Schmitt V; Stébé MJ
    J Colloid Interface Sci; 1999 Oct; 218(2):522-528. PubMed ID: 10502385
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Preparation of mesoporous/macroporous materials in highly concentrated emulsions based on cubic phases by a single-step method.
    Esquena J; Nestor J; Vílchez A; Aramaki K; Solans C
    Langmuir; 2012 Aug; 28(33):12334-40. PubMed ID: 22734484
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Liquid crystalline phases of the amphiphilic ionic liquid N-hexadecyl-N-methylpyrrolidinium bromide formed in the ionic liquid ethylammonium nitrate and in water.
    Zhao M; Gao Y; Zheng L
    J Phys Chem B; 2010 Sep; 114(35):11382-9. PubMed ID: 20712384
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Rheological characterization of the galactomannan from Leucaena leucocephala seed.
    Nwokocha LM; Williams PA
    Carbohydr Polym; 2012 Oct; 90(2):833-8. PubMed ID: 22840009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.