BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 21288643)

  • 1. Atomic-scale distribution of impurities in CuInSe2-based thin-film solar cells.
    Cojocaru-Mirédin O; Choi P; Wuerz R; Raabe D
    Ultramicroscopy; 2011 May; 111(6):552-6. PubMed ID: 21288643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Preparation of large area Al-ZnO thin film by DC magnetron sputtering].
    Jiao F; Liao C; Han JF; Zhou Z
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):698-701. PubMed ID: 19455803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and electronic properties of grain boundaries in earth-abundant photovoltaic absorber Cu2ZnSnSe4.
    Li J; Mitzi DB; Shenoy VB
    ACS Nano; 2011 Nov; 5(11):8613-9. PubMed ID: 22007834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of different Na-incorporating methods on Cu(In,Ga)Se2 thin film solar cells with a low-Na substrate.
    Ye S; Tan X; Jiang M; Fan B; Tang K; Zhuang S
    Appl Opt; 2010 Mar; 49(9):1662-5. PubMed ID: 20300164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation pathway of CuInSe2 nanocrystals for solar cells.
    Kar M; Agrawal R; Hillhouse HW
    J Am Chem Soc; 2011 Nov; 133(43):17239-47. PubMed ID: 21879767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium-assisted passivation of grain boundaries and defects in Cu
    Kim J; Kim GY; Nguyen TTT; Yoon S; Kim YK; Lee SY; Kim M; Cho DH; Chung YD; Lee JH; Seong MJ; Jo W
    Phys Chem Chem Phys; 2020 Apr; 22(14):7597-7605. PubMed ID: 32226986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion of Alkali Metals in Polycrystalline CuInSe
    Chugh M; Kühne TD; Mirhosseini H
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):14821-14829. PubMed ID: 30924332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in sensitized mesoscopic solar cells.
    Grätzel M
    Acc Chem Res; 2009 Nov; 42(11):1788-98. PubMed ID: 19715294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hall effect measurements on Bridgman-grown CuInSe2 with sodium.
    Myers HF; Champness CH; Shih I
    Nanotechnology; 2010 Apr; 21(13):134004. PubMed ID: 20208101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CuInSe2 (CIS) thin films prepared from amorphous Cu-In-Se nanoparticle precursors for solar cell application.
    Ahn S; Kim K; Cho A; Gwak J; Yun JH; Shin K; Ahn S; Yoon K
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1530-6. PubMed ID: 22391391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complementary Characterization of Cu(In,Ga)Se₂ Thin-Film Photovoltaic Cells Using Secondary Ion Mass Spectrometry, Auger Electron Spectroscopy, and Atom Probe Tomography.
    Jang YJ; Lee J; Jeong JH; Lee KB; Kim D; Lee Y
    J Nanosci Nanotechnol; 2018 May; 18(5):3548-3556. PubMed ID: 29442865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CuInSe₂ thin-film solar cells with 7.72 % efficiency prepared via direct coating of a metal salts/alcohol-based precursor solution.
    Ahn S; Son TH; Cho A; Gwak J; Yun JH; Shin K; Ahn SK; Park SH; Yoon K
    ChemSusChem; 2012 Sep; 5(9):1773-7. PubMed ID: 22890958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cu(In,Ga)(S,Se)₂ thin film solar cell with 10.7% conversion efficiency obtained by selenization of the Na-doped spray-pyrolyzed sulfide precursor film.
    Septina W; Kurihara M; Ikeda S; Nakajima Y; Hirano T; Kawasaki Y; Harada T; Matsumura M
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6472-9. PubMed ID: 25774908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth of CuInSe2 and In2Se3/CuInSe2 nano-heterostructures through solid state reactions.
    Hsin CL; Lee WF; Huang CT; Huang CW; Wu WW; Chen LJ
    Nano Lett; 2011 Oct; 11(10):4348-51. PubMed ID: 21859092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic investigation of the deeply buried Cu(In,Ga)(S,Se)2/Mo interface in thin-film solar cells.
    Weinhardt L; Fuchs O; Peter A; Umbach E; Heske C; Reichardt J; Bär M; Lauermann I; Kötschau I; Grimm A; Sokoll S; Lux-Steiner MCh; Niesen TP; Visbeck S; Karg F
    J Chem Phys; 2006 Feb; 124(7):74705. PubMed ID: 16497068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced electrical properties at boundaries including twin boundaries of polycrystalline CdTe thin-film solar cells.
    Li H; Liu XX; Lin YS; Yang B; Du ZM
    Phys Chem Chem Phys; 2015 May; 17(17):11150-5. PubMed ID: 25857742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anisotropy of chemical transformation from In2Se3 to CuInSe2 nanowires through solid state reaction.
    Schoen DT; Peng H; Cui Y
    J Am Chem Soc; 2009 Jun; 131(23):7973-5. PubMed ID: 19507900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium enhances indium-gallium interdiffusion in copper indium gallium diselenide photovoltaic absorbers.
    Colombara D; Werner F; Schwarz T; Cañero Infante I; Fleming Y; Valle N; Spindler C; Vacchieri E; Rey G; Guennou M; Bouttemy M; Manjón AG; Peral Alonso I; Melchiorre M; El Adib B; Gault B; Raabe D; Dale PJ; Siebentritt S
    Nat Commun; 2018 Feb; 9(1):826. PubMed ID: 29483504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrically benign behavior of grain boundaries in polycrystalline CuInSe2 films.
    Yan Y; Jiang CS; Noufi R; Wei SH; Moutinho HR; Al-Jassim MM
    Phys Rev Lett; 2007 Dec; 99(23):235504. PubMed ID: 18233382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analyzing the influence of alloying elements and impurities on the localized reactivity of titanium grade-7 by scanning electrochemical microscopy.
    Zhu R; Qin Z; Noël JJ; Shoesmith DW; Ding Z
    Anal Chem; 2008 Mar; 80(5):1437-47. PubMed ID: 18247518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.