BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 21288901)

  • 1. An infant-associated bacterial commensal utilizes breast milk sialyloligosaccharides.
    Sela DA; Li Y; Lerno L; Wu S; Marcobal AM; German JB; Chen X; Lebrilla CB; Mills DA
    J Biol Chem; 2011 Apr; 286(14):11909-18. PubMed ID: 21288901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variation in consumption of human milk oligosaccharides by infant gut-associated strains of Bifidobacterium breve.
    Ruiz-Moyano S; Totten SM; Garrido DA; Smilowitz JT; German JB; Lebrilla CB; Mills DA
    Appl Environ Microbiol; 2013 Oct; 79(19):6040-9. PubMed ID: 23892749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bifidobacterium longum subsp. infantis uses two different β-galactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides.
    Yoshida E; Sakurama H; Kiyohara M; Nakajima M; Kitaoka M; Ashida H; Hirose J; Katayama T; Yamamoto K; Kumagai H
    Glycobiology; 2012 Mar; 22(3):361-8. PubMed ID: 21926104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel gene cluster allows preferential utilization of fucosylated milk oligosaccharides in Bifidobacterium longum subsp. longum SC596.
    Garrido D; Ruiz-Moyano S; Kirmiz N; Davis JC; Totten SM; Lemay DG; Ugalde JA; German JB; Lebrilla CB; Mills DA
    Sci Rep; 2016 Oct; 6():35045. PubMed ID: 27756904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bifidobacterium longum subsp. infantis ATCC 15697 α-fucosidases are active on fucosylated human milk oligosaccharides.
    Sela DA; Garrido D; Lerno L; Wu S; Tan K; Eom HJ; Joachimiak A; Lebrilla CB; Mills DA
    Appl Environ Microbiol; 2012 Feb; 78(3):795-803. PubMed ID: 22138995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria.
    Asakuma S; Hatakeyama E; Urashima T; Yoshida E; Katayama T; Yamamoto K; Kumagai H; Ashida H; Hirose J; Kitaoka M
    J Biol Chem; 2011 Oct; 286(40):34583-92. PubMed ID: 21832085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An exo-alpha-sialidase from bifidobacteria involved in the degradation of sialyloligosaccharides in human milk and intestinal glycoconjugates.
    Kiyohara M; Tanigawa K; Chaiwangsri T; Katayama T; Ashida H; Yamamoto K
    Glycobiology; 2011 Apr; 21(4):437-47. PubMed ID: 21036948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Release and utilization of N-acetyl-D-glucosamine from human milk oligosaccharides by Bifidobacterium longum subsp. infantis.
    Garrido D; Ruiz-Moyano S; Mills DA
    Anaerobe; 2012 Aug; 18(4):430-5. PubMed ID: 22579845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fucosyllactose and L-fucose utilization of infant Bifidobacterium longum and Bifidobacterium kashiwanohense.
    Bunesova V; Lacroix C; Schwab C
    BMC Microbiol; 2016 Oct; 16(1):248. PubMed ID: 27782805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broad conservation of milk utilization genes in Bifidobacterium longum subsp. infantis as revealed by comparative genomic hybridization.
    LoCascio RG; Desai P; Sela DA; Weimer B; Mills DA
    Appl Environ Microbiol; 2010 Nov; 76(22):7373-81. PubMed ID: 20802066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome.
    Sela DA; Chapman J; Adeuya A; Kim JH; Chen F; Whitehead TR; Lapidus A; Rokhsar DS; Lebrilla CB; German JB; Price NP; Richardson PM; Mills DA
    Proc Natl Acad Sci U S A; 2008 Dec; 105(48):18964-9. PubMed ID: 19033196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides.
    Sela DA; Mills DA
    Trends Microbiol; 2010 Jul; 18(7):298-307. PubMed ID: 20409714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oligosaccharides Released from Milk Glycoproteins Are Selective Growth Substrates for Infant-Associated Bifidobacteria.
    Karav S; Le Parc A; Leite Nobrega de Moura Bell JM; Frese SA; Kirmiz N; Block DE; Barile D; Mills DA
    Appl Environ Microbiol; 2016 Jun; 82(12):3622-3630. PubMed ID: 27084007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of in vitro fermentation ability of lacto-N-biose I, a major building block of human milk oligosaccharides, in bifidobacterial strains.
    Xiao JZ; Takahashi S; Nishimoto M; Odamaki T; Yaeshima T; Iwatsuki K; Kitaoka M
    Appl Environ Microbiol; 2010 Jan; 76(1):54-9. PubMed ID: 19854932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lacto-N-biosidase encoded by a novel gene of Bifidobacterium longum subspecies longum shows unique substrate specificity and requires a designated chaperone for its active expression.
    Sakurama H; Kiyohara M; Wada J; Honda Y; Yamaguchi M; Fukiya S; Yokota A; Ashida H; Kumagai H; Kitaoka M; Yamamoto K; Katayama T
    J Biol Chem; 2013 Aug; 288(35):25194-25206. PubMed ID: 23843461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans.
    Garrido D; Kim JH; German JB; Raybould HE; Mills DA
    PLoS One; 2011 Mar; 6(3):e17315. PubMed ID: 21423604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bifidobacterium breve UCC2003 metabolises the human milk oligosaccharides lacto-N-tetraose and lacto-N-neo-tetraose through overlapping, yet distinct pathways.
    James K; Motherway MO; Bottacini F; van Sinderen D
    Sci Rep; 2016 Dec; 6():38560. PubMed ID: 27929046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Galacto- and Fructo-oligosaccharides Utilized for Growth by Cocultures of Bifidobacterial Species Characteristic of the Infant Gut.
    Sims IM; Tannock GW
    Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infant-gut associated Bifidobacterium dentium strains utilize the galactose moiety and release lacto-N-triose from the human milk oligosaccharides lacto-N-tetraose and lacto-N-neotetraose.
    Moya-Gonzálvez EM; Rubio-Del-Campo A; Rodríguez-Díaz J; Yebra MJ
    Sci Rep; 2021 Dec; 11(1):23328. PubMed ID: 34857830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative transcriptomics reveals key differences in the response to milk oligosaccharides of infant gut-associated bifidobacteria.
    Garrido D; Ruiz-Moyano S; Lemay DG; Sela DA; German JB; Mills DA
    Sci Rep; 2015 Sep; 5():13517. PubMed ID: 26337101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.