These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21288943)

  • 1. Evidence for energy savings from aerial running in the Svalbard rock ptarmigan (Lagopus muta hyperborea).
    Nudds RL; Folkow LP; Lees JJ; Tickle PG; Stokkan KA; Codd JR
    Proc Biol Sci; 2011 Sep; 278(1718):2654-61. PubMed ID: 21288943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terrestrial locomotion of the Svalbard rock ptarmigan: comparing field and laboratory treadmill studies.
    Marmol-Guijarro AC; Nudds RL; Marrin JC; Folkow LP; Codd JR
    Sci Rep; 2019 Aug; 9(1):11451. PubMed ID: 31391515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does posture explain the kinematic differences in a grounded running gait between male and female Svalbard rock ptarmigan (
    Marmol-Guijarro A; Nudds R; Folkow L; Lees J; Codd J
    Polar Biol; 2021; 44(6):1141-1152. PubMed ID: 34720374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The metabolic cost of incline locomotion in the Svalbard rock ptarmigan (Lagopus muta hyperborea): the effects of incline grade and seasonal fluctuations in body mass.
    Lees J; Folkow L; Stokkan KA; Codd J
    J Exp Biol; 2013 Apr; 216(Pt 8):1355-63. PubMed ID: 23264484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gait selection in the ostrich: mechanical and metabolic characteristics of walking and running with and without an aerial phase.
    Rubenson J; Heliams DB; Lloyd DG; Fournier PA
    Proc Biol Sci; 2004 May; 271(1543):1091-9. PubMed ID: 15293864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced metabolic cost of locomotion in Svalbard rock ptarmigan (Lagopus muta hyperborea) during winter.
    Lees J; Nudds R; Stokkan KA; Folkow L; Codd J
    PLoS One; 2010 Nov; 5(11):e15490. PubMed ID: 21125015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait-specific metabolic costs and preferred speeds in ring-tailed lemurs (Lemur catta), with implications for the scaling of locomotor costs.
    O'Neill MC
    Am J Phys Anthropol; 2012 Nov; 149(3):356-64. PubMed ID: 22976581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inverted pendular running: a novel gait predicted by computer optimization is found between walk and run in birds.
    Usherwood JR
    Biol Lett; 2010 Dec; 6(6):765-8. PubMed ID: 20484229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The energetic costs of trunk and distal-limb loading during walking and running in guinea fowl Numida meleagris: I. Organismal metabolism and biomechanics.
    Marsh RL; Ellerby DJ; Henry HT; Rubenson J
    J Exp Biol; 2006 Jun; 209(Pt 11):2050-63. PubMed ID: 16709908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low leg compliance permits grounded running at speeds where the inverted pendulum model gets airborne.
    Andrada E; Blickhan R; Ogihara N; Rode C
    J Theor Biol; 2020 Jun; 494():110227. PubMed ID: 32142807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preferred gait and walk-run transition speeds in ostriches measured using GPS-IMU sensors.
    Daley MA; Channon AJ; Nolan GS; Hall J
    J Exp Biol; 2016 Oct; 219(Pt 20):3301-3308. PubMed ID: 27802152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cecal bacterial communities in wild Japanese rock ptarmigans and captive Svalbard rock ptarmigans.
    Ushida K; Segawa T; Tsuchida S; Murata K
    J Vet Med Sci; 2016 Feb; 78(2):251-7. PubMed ID: 26468217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Walking and running in the red-legged running frog, Kassina maculata.
    Ahn AN; Furrow E; Biewener AA
    J Exp Biol; 2004 Jan; 207(Pt 3):399-410. PubMed ID: 14691087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetics and optimization of human walking and running: the 2000 Raymond Pearl memorial lecture.
    McNeill Alexander R
    Am J Hum Biol; 2002; 14(5):641-8. PubMed ID: 12203818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing the metabolic energy of walking and running using an unpowered hip exoskeleton.
    Zhou T; Xiong C; Zhang J; Hu D; Chen W; Huang X
    J Neuroeng Rehabil; 2021 Jun; 18(1):95. PubMed ID: 34092259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Influence of Snow Properties on Speed and Gait Choice in the Svalbard Rock Ptarmigan (
    Mármol-Guijarro A; Nudds R; Folkow L; Sellers W; Falkingham P; Codd J
    Integr Org Biol; 2021; 3(1):obab021. PubMed ID: 34405129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gait-specific energetics contributes to economical walking and running in emus and ostriches.
    Watson RR; Rubenson J; Coder L; Hoyt DF; Propert MW; Marsh RL
    Proc Biol Sci; 2011 Jul; 278(1714):2040-6. PubMed ID: 21123267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preferred and energetically optimal gait transition speeds in human locomotion.
    Hreljac A
    Med Sci Sports Exerc; 1993 Oct; 25(10):1158-62. PubMed ID: 8231761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of season and sex upon the morphology and material properties of keratin in the Svalbard rock ptarmigan (Lagopus muta hyperborea).
    Lees JJ; Folkow LP; Nudds RL; Codd JR
    J Therm Biol; 2014 Aug; 44():126-30. PubMed ID: 25086983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blood flow in guinea fowl Numida meleagris as an indicator of energy expenditure by individual muscles during walking and running.
    Ellerby DJ; Henry HT; Carr JA; Buchanan CI; Marsh RL
    J Physiol; 2005 Apr; 564(Pt 2):631-48. PubMed ID: 15731191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.