BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 21289076)

  • 1. Reevaluation of the microsomal metabolism of montelukast: major contribution by CYP2C8 at clinically relevant concentrations.
    Filppula AM; Laitila J; Neuvonen PJ; Backman JT
    Drug Metab Dispos; 2011 May; 39(5):904-11. PubMed ID: 21289076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of human CYP2C8 and CYP2C9 variants in pioglitazone metabolism in vitro.
    Muschler E; Lal J; Jetter A; Rattay A; Zanger U; Zadoyan G; Fuhr U; Kirchheiner J
    Basic Clin Pharmacol Toxicol; 2009 Dec; 105(6):374-9. PubMed ID: 19614891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gemfibrozil markedly increases the plasma concentrations of montelukast: a previously unrecognized role for CYP2C8 in the metabolism of montelukast.
    Karonen T; Filppula A; Laitila J; Niemi M; Neuvonen PJ; Backman JT
    Clin Pharmacol Ther; 2010 Aug; 88(2):223-30. PubMed ID: 20592724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confirmation that cytochrome P450 2C8 (CYP2C8) plays a minor role in (S)-(+)- and (R)-(-)-ibuprofen hydroxylation in vitro.
    Chang SY; Li W; Traeger SC; Wang B; Cui D; Zhang H; Wen B; Rodrigues AD
    Drug Metab Dispos; 2008 Dec; 36(12):2513-22. PubMed ID: 18787056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective inhibition of human cytochrome P4502C8 by montelukast.
    Walsky RL; Obach RS; Gaman EA; Gleeson JP; Proctor WR
    Drug Metab Dispos; 2005 Mar; 33(3):413-8. PubMed ID: 15608135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of CYP2C8 inhibition in vitro: utility of montelukast as a selective CYP2C8 probe substrate.
    VandenBrink BM; Foti RS; Rock DA; Wienkers LC; Wahlstrom JL
    Drug Metab Dispos; 2011 Sep; 39(9):1546-54. PubMed ID: 21697463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hepatic microsomal metabolism of montelukast, a potent leukotriene D4 receptor antagonist, in humans.
    Chiba M; Xu X; Nishime JA; Balani SK; Lin JH
    Drug Metab Dispos; 1997 Sep; 25(9):1022-31. PubMed ID: 9311616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of metabolites and human P450 isoforms involved in the microsomal metabolism of mesaconitine.
    Ye L; Tang L; Gong Y; Lv C; Zheng Z; Jiang Z; Liu Z
    Xenobiotica; 2011 Jan; 41(1):46-58. PubMed ID: 21105783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pioglitazone is metabolised by CYP2C8 and CYP3A4 in vitro: potential for interactions with CYP2C8 inhibitors.
    Jaakkola T; Laitila J; Neuvonen PJ; Backman JT
    Basic Clin Pharmacol Toxicol; 2006 Jul; 99(1):44-51. PubMed ID: 16867170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro metabolism of the calmodulin antagonist DY-9760e (3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate) by human liver microsomes: involvement of cytochromes p450 in atypical kinetics and potential drug interactions.
    Tachibana S; Fujimaki Y; Yokoyama H; Okazaki O; Sudo K
    Drug Metab Dispos; 2005 Nov; 33(11):1628-36. PubMed ID: 16049129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trimethoprim and sulfamethoxazole are selective inhibitors of CYP2C8 and CYP2C9, respectively.
    Wen X; Wang JS; Backman JT; Laitila J; Neuvonen PJ
    Drug Metab Dispos; 2002 Jun; 30(6):631-5. PubMed ID: 12019187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of CYP3A4, CYP2C8, and CYP2D6 in the metabolism of (R)- and (S)-methadone in vitro.
    Wang JS; DeVane CL
    Drug Metab Dispos; 2003 Jun; 31(6):742-7. PubMed ID: 12756206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor fluvastatin: effect on human cytochrome P-450 and implications for metabolic drug interactions.
    Fischer V; Johanson L; Heitz F; Tullman R; Graham E; Baldeck JP; Robinson WT
    Drug Metab Dispos; 1999 Mar; 27(3):410-6. PubMed ID: 10064574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human CYP2C19 is a major omeprazole 5-hydroxylase, as demonstrated with recombinant cytochrome P450 enzymes.
    Karam WG; Goldstein JA; Lasker JM; Ghanayem BI
    Drug Metab Dispos; 1996 Oct; 24(10):1081-7. PubMed ID: 8894508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitory effect of glyburide on human cytochrome p450 isoforms in human liver microsomes.
    Kim KA; Park JY
    Drug Metab Dispos; 2003 Sep; 31(9):1090-2. PubMed ID: 12920163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro characterization of the metabolism of haloperidol using recombinant cytochrome p450 enzymes and human liver microsomes.
    Fang J; McKay G; Song J; Remillrd A; Li X; Midha K
    Drug Metab Dispos; 2001 Dec; 29(12):1638-43. PubMed ID: 11717183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of cisapride with the human cytochrome P450 system: metabolism and inhibition studies.
    Desta Z; Soukhova N; Mahal SK; Flockhart DA
    Drug Metab Dispos; 2000 Jul; 28(7):789-800. PubMed ID: 10859153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of human cytochrome P450 isozymes responsible for the in vitro oxidative metabolism of finasteride.
    Huskey SW; Dean DC; Miller RR; Rasmusson GH; Chiu SH
    Drug Metab Dispos; 1995 Oct; 23(10):1126-35. PubMed ID: 8654202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vitro Metabolism of Montelukast by Cytochrome P450s and UDP-Glucuronosyltransferases.
    Cardoso Jde O; Oliveira RV; Lu JB; Desta Z
    Drug Metab Dispos; 2015 Dec; 43(12):1905-16. PubMed ID: 26374173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation of 1,8-cineole, the monoterpene cyclic ether originated from eucalyptus polybractea, by cytochrome P450 3A enzymes in rat and human liver microsomes.
    Miyazawa M; Shindo M; Shimada T
    Drug Metab Dispos; 2001 Feb; 29(2):200-5. PubMed ID: 11159812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.