BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 21289297)

  • 1. The incorporation of 5-fluorouracil into RNA affects the ribonucleolytic activity of the exosome subunit Rrp6.
    Silverstein RA; González de Valdivia E; Visa N
    Mol Cancer Res; 2011 Mar; 9(3):332-40. PubMed ID: 21289297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 5-fluorouracil enhances exosome-dependent accumulation of polyadenylated rRNAs.
    Fang F; Hoskins J; Butler JS
    Mol Cell Biol; 2004 Dec; 24(24):10766-76. PubMed ID: 15572680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The subcellular localisation of trypanosome RRP6 and its association with the exosome.
    Haile S; Cristodero M; Clayton C; Estévez AM
    Mol Biochem Parasitol; 2007 Jan; 151(1):52-8. PubMed ID: 17118470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for distinct DNA- and RNA-based mechanisms of 5-fluorouracil cytotoxicity in Saccharomyces cerevisiae.
    Hoskins J; Scott Butler J
    Yeast; 2007 Oct; 24(10):861-70. PubMed ID: 17640085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RRP6/EXOSC10 is required for the repair of DNA double-strand breaks by homologous recombination.
    Marin-Vicente C; Domingo-Prim J; Eberle AB; Visa N
    J Cell Sci; 2015 Mar; 128(6):1097-107. PubMed ID: 25632158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The RNA exosome component hRrp6 is a target for 5-fluorouracil in human cells.
    Kammler S; Lykke-Andersen S; Jensen TH
    Mol Cancer Res; 2008 Jun; 6(6):990-5. PubMed ID: 18567802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA-based 5-fluorouracil toxicity requires the pseudouridylation activity of Cbf5p.
    Hoskins J; Butler JS
    Genetics; 2008 May; 179(1):323-30. PubMed ID: 18493057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective protection by uridine of growth inhibition by 5-fluorouracil (5FU) mediated by 5FU incorporation into RNA, but not the thymidylate synthase mediated growth inhibition by 5FU-leucovorin.
    Codacci-Pisanelli G; Noordhuis P; van der Wilt CL; Peters GJ
    Nucleosides Nucleotides Nucleic Acids; 2008 Jun; 27(6):733-9. PubMed ID: 18600533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Rrp6 C-terminal domain binds RNA and activates the nuclear RNA exosome.
    Wasmuth EV; Lima CD
    Nucleic Acids Res; 2017 Jan; 45(2):846-860. PubMed ID: 27899565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila.
    Andrulis ED; Werner J; Nazarian A; Erdjument-Bromage H; Tempst P; Lis JT
    Nature; 2002 Dec 19-26; 420(6917):837-41. PubMed ID: 12490954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Splice-site mutations cause Rrp6-mediated nuclear retention of the unspliced RNAs and transcriptional down-regulation of the splicing-defective genes.
    Eberle AB; Hessle V; Helbig R; Dantoft W; Gimber N; Visa N
    PLoS One; 2010 Jul; 5(7):e11540. PubMed ID: 20634951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rrp4 and Csl4 are needed for efficient degradation but not for polyadenylation of synthetic and natural RNA by the archaeal exosome.
    Evguenieva-Hackenberg E; Roppelt V; Finsterseifer P; Klug G
    Biochemistry; 2008 Dec; 47(50):13158-68. PubMed ID: 19053279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single exposures to antiproliferatives: long-term effects on ocular fibroblast wound-healing behavior.
    Occleston NL; Daniels JT; Tarnuzzer RW; Sethi KK; Alexander RA; Bhattacharya SS; Schultz GS; Khaw PT
    Invest Ophthalmol Vis Sci; 1997 Sep; 38(10):1998-2007. PubMed ID: 9331263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endonucleolytic RNA cleavage by a eukaryotic exosome.
    Lebreton A; Tomecki R; Dziembowski A; Séraphin B
    Nature; 2008 Dec; 456(7224):993-6. PubMed ID: 19060886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of native and reconstituted exosome complexes from the hyperthermophilic archaeon Sulfolobus solfataricus.
    Walter P; Klein F; Lorentzen E; Ilchmann A; Klug G; Evguenieva-Hackenberg E
    Mol Microbiol; 2006 Nov; 62(4):1076-89. PubMed ID: 17078816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rrp6, Rrp47 and cofactors of the nuclear exosome.
    Butler JS; Mitchell P
    Adv Exp Med Biol; 2010; 702():91-104. PubMed ID: 21618877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell and molecular biology of the exosome: how to make or break an RNA.
    Schilders G; van Dijk E; Raijmakers R; Pruijn GJ
    Int Rev Cytol; 2006; 251():159-208. PubMed ID: 16939780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of 5-fluorouracil on the proteome of colon cancer cells.
    Marin-Vicente C; Lyutvinskiy Y; Romans Fuertes P; Zubarev RA; Visa N
    J Proteome Res; 2013 Apr; 12(4):1969-79. PubMed ID: 23477467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination studies of antifolates with 5-fluorouracil in colon cancer cell lines.
    van der Wilt CL; Kuiper CM; Peters GJ
    Oncol Res; 1999; 11(8):383-91. PubMed ID: 10803742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative multiplexed mass spectrometric analyses of endogenously expressed yeast nuclear and cytoplasmic exosomes.
    Synowsky SA; van Wijk M; Raijmakers R; Heck AJ
    J Mol Biol; 2009 Jan; 385(4):1300-13. PubMed ID: 19046973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.