These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 21290048)

  • 21. A model for Joule heating-induced dispersion in microchip electrophoresis.
    Wang Y; Lin Q; Mukherjee T
    Lab Chip; 2004 Dec; 4(6):625-31. PubMed ID: 15570376
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scaling of electrokinetic transport in nanometer channels.
    Qiao R; Aluru NR
    Langmuir; 2005 Sep; 21(19):8972-7. PubMed ID: 16142986
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient energy based modeling and experimental validation of liquid filling in planar micro-fluidic components and networks.
    Treise I; Fortner N; Shapiro B; Hightower A
    Lab Chip; 2005 Mar; 5(3):285-97. PubMed ID: 15726205
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flexible polyimide probes with microelectrodes and embedded microfluidic channels for simultaneous drug delivery and multi-channel monitoring of bioelectric activity.
    Metz S; Bertsch A; Bertrand D; Renaud P
    Biosens Bioelectron; 2004 May; 19(10):1309-18. PubMed ID: 15046764
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanofluidic devices and their applications.
    Abgrall P; Nguyen NT
    Anal Chem; 2008 Apr; 80(7):2326-41. PubMed ID: 18321133
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dielectrophoretic platforms for bio-microfluidic systems.
    Khoshmanesh K; Nahavandi S; Baratchi S; Mitchell A; Kalantar-zadeh K
    Biosens Bioelectron; 2011 Jan; 26(5):1800-14. PubMed ID: 20933384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transport and sensing in nanofluidic devices.
    Zhou K; Perry JM; Jacobson SC
    Annu Rev Anal Chem (Palo Alto Calif); 2011; 4():321-41. PubMed ID: 21456970
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A simple method to determine the surface charge in microfluidic channels.
    Mampallil D; van den Ende D; Mugele F
    Electrophoresis; 2010 Jan; 31(3):563-9. PubMed ID: 20119966
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intensive current transfer in membrane systems: modelling, mechanisms and application in electrodialysis.
    Nikonenko VV; Pismenskaya ND; Belova EI; Sistat P; Huguet P; Pourcelly G; Larchet C
    Adv Colloid Interface Sci; 2010 Oct; 160(1-2):101-23. PubMed ID: 20833381
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrochemical generation of gradients in surfactant concentration across microfluidic channels.
    Liu X; Abbott NL
    Anal Chem; 2009 Jan; 81(2):772-81. PubMed ID: 19086794
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films--theoretical considerations and experimental studies.
    Schichtel N; Korte C; Hesse D; Janek J
    Phys Chem Chem Phys; 2009 May; 11(17):3043-8. PubMed ID: 19370197
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of the three-dimensional heterogeneous roughness on electrokinetic transport in microchannels.
    Hu Y; Werner C; Li D
    J Colloid Interface Sci; 2004 Dec; 280(2):527-36. PubMed ID: 15533426
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanofluidic technology for biomolecule applications: a critical review.
    Napoli M; Eijkel JC; Pennathur S
    Lab Chip; 2010 Apr; 10(8):957-85. PubMed ID: 20358103
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrokinetic transport and separations in fluidic nanochannels.
    Yuan Z; Garcia AL; Lopez GP; Petsev DN
    Electrophoresis; 2007 Feb; 28(4):595-610. PubMed ID: 17304495
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ionic current rectification at a nanofluidic/microfluidic interface with an asymmetric microfluidic system.
    Miller SA; Kelly KC; Timperman AT
    Lab Chip; 2008 Oct; 8(10):1729-32. PubMed ID: 18813397
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering transfer of micro- and nanometer-scale features by surface energy modification.
    Cortese B; Piliego C; Viola I; D'Amone S; Cingolani R; Gigli G
    Langmuir; 2009 Jun; 25(12):7025-31. PubMed ID: 19405480
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Induced-charge electrokinetics: fundamental challenges and opportunities.
    Squires TM
    Lab Chip; 2009 Sep; 9(17):2477-83. PubMed ID: 19680573
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molded polyethylene glycol microstructures for capturing cells within microfluidic channels.
    Khademhosseini A; Yeh J; Jon S; Eng G; Suh KY; Burdick JA; Langer R
    Lab Chip; 2004 Oct; 4(5):425-30. PubMed ID: 15472725
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facile fabrication of microfluidic systems using electron beam lithography.
    Mali P; Sarkar A; Lal R
    Lab Chip; 2006 Feb; 6(2):310-5. PubMed ID: 16450043
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional chemical profile manipulation using two-dimensional autonomous microfluidic control.
    Kim Y; Pekkan K; Messner WC; Leduc PR
    J Am Chem Soc; 2010 Feb; 132(4):1339-47. PubMed ID: 20063880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.