BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 21290383)

  • 21. Electricity generation from indole and microbial community analysis in the microbial fuel cell.
    Luo Y; Zhang R; Liu G; Li J; Li M; Zhang C
    J Hazard Mater; 2010 Apr; 176(1-3):759-64. PubMed ID: 20006429
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH.
    Behera M; Ghangrekar MM
    Bioresour Technol; 2009 Nov; 100(21):5114-21. PubMed ID: 19539466
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber.
    Patil SA; Surakasi VP; Koul S; Ijmulwar S; Vivek A; Shouche YS; Kapadnis BP
    Bioresour Technol; 2009 Nov; 100(21):5132-9. PubMed ID: 19539465
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation.
    Kalathil S; Lee J; Cho MH
    N Biotechnol; 2011 Dec; 29(1):32-7. PubMed ID: 21718812
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In situ investigation of processing property in combination with integration of microbial fuel cell and tubular membrane bioreactor.
    Wang J; Zheng Y; Jia H; Zhang H
    Bioresour Technol; 2013 Dec; 149():163-8. PubMed ID: 24099973
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integration of microbial fuel cell techniques into activated sludge wastewater treatment processes to improve nitrogen removal and reduce sludge production.
    Gajaraj S; Hu Z
    Chemosphere; 2014 Dec; 117():151-7. PubMed ID: 25014565
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An evaluation of aerobic and anaerobic sludges as start-up material for microbial fuel cell systems.
    Lobato J; Cañizares P; Fernández FJ; Rodrigo MA
    N Biotechnol; 2012 Feb; 29(3):415-20. PubMed ID: 21968392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Study of the acclimation stage and of the effect of the biodegradability on the performance of a microbial fuel cell.
    Rodrigo MA; Cañizares P; García H; Linares JJ; Lobato J
    Bioresour Technol; 2009 Oct; 100(20):4704-10. PubMed ID: 19487121
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Freezing/thawing effect on sewage sludge degradation and electricity generation in microbial fuel cell.
    Chen Y; Jiang J; Zhao Q
    Water Sci Technol; 2014; 70(3):444-9. PubMed ID: 25098873
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biological treatment of shrimp aquaculture wastewater using a sequencing batch reactor.
    Lyles C; Boopathy R; Fontenot Q; Kilgen M
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):474-9. PubMed ID: 18561032
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electricity production by an overflow-type wetted-wall microbial fuel cell.
    Li Z; Zhang X; Zeng Y; Lei L
    Bioresour Technol; 2009 May; 100(9):2551-5. PubMed ID: 19157869
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electricity production from beer brewery wastewater using single chamber microbial fuel cell.
    Wang X; Feng YJ; Lee H
    Water Sci Technol; 2008; 57(7):1117-21. PubMed ID: 18441441
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrated photo-bioelectrochemical system for contaminants removal and bioenergy production.
    Xiao L; Young EB; Berges JA; He Z
    Environ Sci Technol; 2012 Oct; 46(20):11459-66. PubMed ID: 22998430
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Continuous flowing membraneless microbial fuel cells with separated electrode chambers.
    Du F; Xie B; Dong W; Jia B; Dong K; Liu H
    Bioresour Technol; 2011 Oct; 102(19):8914-20. PubMed ID: 21821412
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Further treatment of decolorization liquid of azo dye coupled with increased power production using microbial fuel cell equipped with an aerobic biocathode.
    Sun J; Bi Z; Hou B; Cao YQ; Hu YY
    Water Res; 2011 Jan; 45(1):283-91. PubMed ID: 20727567
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a novel bioelectrochemical membrane reactor for wastewater treatment.
    Wang YK; Sheng GP; Li WW; Huang YX; Yu YY; Zeng RJ; Yu HQ
    Environ Sci Technol; 2011 Nov; 45(21):9256-61. PubMed ID: 21978391
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of excess activated sludge ozonation in an SBR Plant. Effects on substrate fractioning and solids production.
    Naso M; Chiavola A; Rolle E
    Water Sci Technol; 2008; 58(1):239-45. PubMed ID: 18653960
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbial fuel cells for simultaneous carbon and nitrogen removal.
    Virdis B; Rabaey K; Yuan Z; Keller J
    Water Res; 2008 Jun; 42(12):3013-24. PubMed ID: 18466949
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A microbial fuel cell equipped with a biocathode for organic removal and denitrification.
    Lefebvre O; Al-Mamun A; Ng HY
    Water Sci Technol; 2008; 58(4):881-5. PubMed ID: 18776625
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electricity production and sludge reduction by integrating microbial fuel cells in anoxic-oxic process.
    Xiao B; Luo M; Wang X; Li Z; Chen H; Liu J; Guo X
    Waste Manag; 2017 Nov; 69():346-352. PubMed ID: 28778783
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.