These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 21290383)

  • 41. Integrating anaerobic processes into wastewater treatment.
    McAdam EJ; Lüffler D; Martin-Garcia N; Eusebi AL; Lester JN; Jefferson B; Cartmell E
    Water Sci Technol; 2011; 63(7):1459-66. PubMed ID: 21508551
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater.
    Ni BJ; Xie WM; Liu SG; Yu HQ; Wang YZ; Wang G; Dai XL
    Water Res; 2009 Feb; 43(3):751-61. PubMed ID: 19059624
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Municipal waste sludge digestion in an autothermal aerobic sequencing batch reactor.
    Zupanèiè GD; Grilc V; Ros M; Uranjek-Zevart N
    Water Sci Technol; 2008; 58(6):1237-43. PubMed ID: 18845862
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nitrifying biocathode enables effective electricity generation and sustainable wastewater treatment with microbial fuel cell.
    Tran HT; Kim DH; Oh SJ; Rasool K; Park DH; Zhang RH; Ahn DH
    Water Sci Technol; 2009; 59(9):1803-8. PubMed ID: 19448316
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of pretreated activated sludge for electricity generation in microbial fuel cell application.
    Yusoff MZ; Hu A; Feng C; Maeda T; Shirai Y; Hassan MA; Yu CP
    Bioresour Technol; 2013 Oct; 145():90-6. PubMed ID: 23566463
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of ultrasonic and alkaline pretreatment on sludge degradation and electricity generation by microbial fuel cell.
    Jiang JQ; Zhao QL; Wang K; Wei LL; Zhang GD; Zhang JN
    Water Sci Technol; 2010; 61(11):2915-21. PubMed ID: 20489265
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell.
    Rashid N; Cui YF; Saif Ur Rehman M; Han JI
    Sci Total Environ; 2013 Jul; 456-457():91-4. PubMed ID: 23584037
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pyridine degradation in the microbial fuel cells.
    Zhang C; Li M; Liu G; Luo H; Zhang R
    J Hazard Mater; 2009 Dec; 172(1):465-71. PubMed ID: 19682792
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell.
    Huang L; Logan BE
    Appl Microbiol Biotechnol; 2008 Aug; 80(2):349-55. PubMed ID: 18542943
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electricity production from xylose in fed-batch and continuous-flow microbial fuel cells.
    Huang L; Logan BE
    Appl Microbiol Biotechnol; 2008 Sep; 80(4):655-64. PubMed ID: 18626640
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Electricity production from surplus sludge using microbial fuel cells].
    Jia B; Liu ZH; Li XM; Yang YL; Yang Q; Zeng GM; Liu YL; Liu QQ; Zheng SW
    Huan Jing Ke Xue; 2009 Apr; 30(4):1227-31. PubMed ID: 19545034
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Integrated function of microbial fuel cell (MFC) as bio-electrochemical treatment system associated with bioelectricity generation under higher substrate load.
    Mohan SV; Raghavulu SV; Peri D; Sarma PN
    Biosens Bioelectron; 2009 Mar; 24(7):2021-7. PubMed ID: 19058958
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biochemical evaluation of bioelectricity production process from anaerobic wastewater treatment in a single chambered microbial fuel cell (MFC) employing glass wool membrane.
    Venkata Mohan S; Veer Raghavulu S; Sarma PN
    Biosens Bioelectron; 2008 Apr; 23(9):1326-32. PubMed ID: 18248978
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Conversion of activated-sludge reactors to microbial fuel cells for wastewater treatment coupled to electricity generation.
    Yoshizawa T; Miyahara M; Kouzuma A; Watanabe K
    J Biosci Bioeng; 2014 Nov; 118(5):533-9. PubMed ID: 24856588
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Performance of 14 full-scale sewage treatment plants: comparison between four aerobic technologies regarding effluent quality, sludge production and energy consumption.
    Vera I; Sáez K; Vidal G
    Environ Technol; 2013; 34(13-16):2267-75. PubMed ID: 24350481
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of pH on nutrient dynamics and electricity production using microbial fuel cells.
    Puig S; Serra M; Coma M; Cabré M; Balaguer MD; Colprim J
    Bioresour Technol; 2010 Dec; 101(24):9594-9. PubMed ID: 20702091
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Copper recovery combined with electricity production in a microbial fuel cell.
    Heijne AT; Liu F; Weijden Rv; Weijma J; Buisman CJ; Hamelers HV
    Environ Sci Technol; 2010 Jun; 44(11):4376-81. PubMed ID: 20462261
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microbial fuel cells for energy self-sufficient domestic wastewater treatment-a review and discussion from energetic consideration.
    Lefebvre O; Uzabiaga A; Chang IS; Kim BH; Ng HY
    Appl Microbiol Biotechnol; 2011 Jan; 89(2):259-70. PubMed ID: 20931187
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electricity production from xylose using a mediator-less microbial fuel cell.
    Huang L; Zeng RJ; Angelidaki I
    Bioresour Technol; 2008 Jul; 99(10):4178-84. PubMed ID: 17964145
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In situ investigation of tubular microbial fuel cells deployed in an aeration tank at a municipal wastewater treatment plant.
    Zhang F; Ge Z; Grimaud J; Hurst J; He Z
    Bioresour Technol; 2013 May; 136():316-21. PubMed ID: 23567697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.