BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 21290541)

  • 1. Rebeccamycin and staurosporine biosynthesis: insight into the mechanisms of the flavin-dependent monooxygenases RebC and StaC.
    Groom K; Bhattacharya A; Zechel DL
    Chembiochem; 2011 Feb; 12(3):396-400. PubMed ID: 21290541
    [No Abstract]   [Full Text] [Related]  

  • 2. Staurosporine and rebeccamycin aglycones are assembled by the oxidative action of StaP, StaC, and RebC on chromopyrrolic acid.
    Howard-Jones AR; Walsh CT
    J Am Chem Soc; 2006 Sep; 128(37):12289-98. PubMed ID: 16967980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An unusual role for a mobile flavin in StaC-like indolocarbazole biosynthetic enzymes.
    Goldman PJ; Ryan KS; Hamill MJ; Howard-Jones AR; Walsh CT; Elliott SJ; Drennan CL
    Chem Biol; 2012 Jul; 19(7):855-65. PubMed ID: 22840773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and functional modification of StaC and RebC, which are involved in the pyrrole oxidation of indolocarbazole biosynthesis.
    Asamizu S; Shiro Y; Igarashi Y; Nagano S; Onaka H
    Biosci Biotechnol Biochem; 2011; 75(11):2184-93. PubMed ID: 22056432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonenzymatic oxidative steps accompanying action of the cytochrome P450 enzymes StaP and RebP in the biosynthesis of staurosporine and rebeccamycin.
    Howard-Jones AR; Walsh CT
    J Am Chem Soc; 2007 Sep; 129(36):11016-7. PubMed ID: 17705392
    [No Abstract]   [Full Text] [Related]  

  • 6. Crystallographic trapping in the rebeccamycin biosynthetic enzyme RebC.
    Ryan KS; Howard-Jones AR; Hamill MJ; Elliott SJ; Walsh CT; Drennan CL
    Proc Natl Acad Sci U S A; 2007 Sep; 104(39):15311-6. PubMed ID: 17873060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering biosynthetic pathways to generate antitumor indolocarbazole derivatives.
    Sánchez C; Méndez C; Salas JA
    J Ind Microbiol Biotechnol; 2006 Jul; 33(7):560-8. PubMed ID: 16491358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combinatorial biosynthesis of antitumor indolocarbazole compounds.
    Sánchez C; Zhu L; Braña AF; Salas AP; Rohr J; Méndez C; Salas JA
    Proc Natl Acad Sci U S A; 2005 Jan; 102(2):461-6. PubMed ID: 15625109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flavin dependent monooxygenases.
    Huijbers MM; Montersino S; Westphal AH; Tischler D; van Berkel WJ
    Arch Biochem Biophys; 2014 Feb; 544():2-17. PubMed ID: 24361254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural insight into the mechanism of oxygen activation and substrate selectivity of flavin-dependent N-hydroxylating monooxygenases.
    Franceschini S; Fedkenheuer M; Vogelaar NJ; Robinson HH; Sobrado P; Mattevi A
    Biochemistry; 2012 Sep; 51(36):7043-5. PubMed ID: 22928747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The FAD cofactor of RebC shifts to an IN conformation upon flavin reduction.
    Ryan KS; Chakraborty S; Howard-Jones AR; Walsh CT; Ballou DP; Drennan CL
    Biochemistry; 2008 Dec; 47(51):13506-13. PubMed ID: 19035832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitronate monooxygenase, a model for anionic flavin semiquinone intermediates in oxidative catalysis.
    Gadda G; Francis K
    Arch Biochem Biophys; 2010 Jan; 493(1):53-61. PubMed ID: 19577534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent developments in the application of Baeyer-Villiger monooxygenases as biocatalysts.
    de Gonzalo G; Mihovilovic MD; Fraaije MW
    Chembiochem; 2010 Nov; 11(16):2208-31. PubMed ID: 20936617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of catalysis in flavin-dependent monooxygenases.
    Palfey BA; McDonald CA
    Arch Biochem Biophys; 2010 Jan; 493(1):26-36. PubMed ID: 19944667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of indolocarbazole and goadsporin, two different heterocyclic antibiotics produced by actinomycetes.
    Onaka H
    Biosci Biotechnol Biochem; 2009 Oct; 73(10):2149-55. PubMed ID: 19809190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of two flavin monooxygenases from an effluent treatment plant sludge metagenomic library.
    Singh A; Singh Chauhan N; Thulasiram HV; Taneja V; Sharma R
    Bioresour Technol; 2010 Nov; 101(21):8481-4. PubMed ID: 20591656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering the late steps in the biosynthesis of the anti-tumour indolocarbazole staurosporine: sugar donor substrate flexibility of the StaG glycosyltransferase.
    Salas AP; Zhu L; Sánchez C; Braña AF; Rohr J; Méndez C; Salas JA
    Mol Microbiol; 2005 Oct; 58(1):17-27. PubMed ID: 16164546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting the regioselectivity of Baeyer-Villiger monooxygenases for the formation of beta-amino acids and beta-amino alcohols.
    Rehdorf J; Mihovilovic MD; Bornscheuer UT
    Angew Chem Int Ed Engl; 2010 Jun; 49(26):4506-8. PubMed ID: 20455228
    [No Abstract]   [Full Text] [Related]  

  • 19. The staurosporine producing strain Streptomyces longisporoflavus produces metabolites related to K-252a. Proposal for biosynthetic intermediates of K-252a.
    Cai Y; Fredenhagen A; Hug P; Peter HH
    J Antibiot (Tokyo); 1996 Oct; 49(10):1060-2. PubMed ID: 8968403
    [No Abstract]   [Full Text] [Related]  

  • 20. Laboratory evolution of robust and enantioselective Baeyer-Villiger monooxygenases for asymmetric catalysis.
    Reetz MT; Wu S
    J Am Chem Soc; 2009 Oct; 131(42):15424-32. PubMed ID: 19807086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.