These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 21290541)

  • 21. Generation of potent and selective kinase inhibitors by combinatorial biosynthesis of glycosylated indolocarbazoles.
    Sánchez C; Salas AP; Braña AF; Palomino M; Pineda-Lucena A; Carbajo RJ; Méndez C; Moris F; Salas JA
    Chem Commun (Camb); 2009 Jul; (27):4118-20. PubMed ID: 19568652
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flavin-containing monooxygenases in plants: looking beyond detox.
    Schlaich NL
    Trends Plant Sci; 2007 Sep; 12(9):412-8. PubMed ID: 17765596
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Baeyer-Villiger monooxygenases: recent advances and future challenges.
    Torres Pazmiño DE; Dudek HM; Fraaije MW
    Curr Opin Chem Biol; 2010 Apr; 14(2):138-44. PubMed ID: 20015679
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural Insights into a Flavin-Dependent [4 + 2] Cyclase that Catalyzes trans-Decalin Formation in Pyrroindomycin Biosynthesis.
    Zheng Q; Gong Y; Guo Y; Zhao Z; Wu Z; Zhou Z; Chen D; Pan L; Liu W
    Cell Chem Biol; 2018 Jun; 25(6):718-727.e3. PubMed ID: 29657086
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insights into caerulomycin A biosynthesis: a two-component monooxygenase CrmH-catalyzed oxime formation.
    Zhu Y; Zhang Q; Li S; Lin Q; Fu P; Zhang G; Zhang H; Shi R; Zhu W; Zhang C
    J Am Chem Soc; 2013 Dec; 135(50):18750-3. PubMed ID: 24295370
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monooxygenases as biocatalysts: Classification, mechanistic aspects and biotechnological applications.
    Torres Pazmiño DE; Winkler M; Glieder A; Fraaije MW
    J Biotechnol; 2010 Mar; 146(1-2):9-24. PubMed ID: 20132846
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Indolocarbazole antitumour compounds by combinatorial biosynthesis.
    Salas JA; Méndez C
    Curr Opin Chem Biol; 2009 Apr; 13(2):152-60. PubMed ID: 19251468
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases.
    Ballou DP; Entsch B; Cole LJ
    Biochem Biophys Res Commun; 2005 Dec; 338(1):590-8. PubMed ID: 16236251
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional analysis of TMLH variants and definition of domains required for catalytic activity and mitochondrial targeting.
    Monfregola J; Cevenini A; Terracciano A; van Vlies N; Arbucci S; Wanders RJ; D'Urso M; Vaz FM; Ursini MV
    J Cell Physiol; 2005 Sep; 204(3):839-47. PubMed ID: 15754339
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Family clustering of Baeyer-Villiger monooxygenases based on protein sequence and stereopreference.
    Mihovilovic MD; Rudroff F; Grötzl B; Kapitan P; Snajdrova R; Rydz J; Mach R
    Angew Chem Int Ed Engl; 2005 Jun; 44(23):3609-13. PubMed ID: 15861400
    [No Abstract]   [Full Text] [Related]  

  • 32. Chloramphenicol biosynthesis: the structure of CmlS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond.
    Podzelinska K; Latimer R; Bhattacharya A; Vining LC; Zechel DL; Jia Z
    J Mol Biol; 2010 Mar; 397(1):316-31. PubMed ID: 20080101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insights into sequence-activity relationships amongst Baeyer-Villiger monooxygenases as revealed by the intragenomic complement of enzymes from Rhodococcus jostii RHA1.
    Szolkowy C; Eltis LD; Bruce NC; Grogan G
    Chembiochem; 2009 May; 10(7):1208-17. PubMed ID: 19360806
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient biooxidations catalyzed by a new generation of self-sufficient Baeyer-Villiger monooxygenases.
    Torres Pazmiño DE; Riebel A; de Lange J; Rudroff F; Mihovilovic MD; Fraaije MW
    Chembiochem; 2009 Nov; 10(16):2595-8. PubMed ID: 19795432
    [No Abstract]   [Full Text] [Related]  

  • 35. The molybdenum-containing hydroxylases of quinoline, isoquinoline, and quinaldine.
    Kappl R; Hüttermann J; Fetzner S
    Met Ions Biol Syst; 2002; 39():481-537. PubMed ID: 11913135
    [No Abstract]   [Full Text] [Related]  

  • 36. Recent studies on the structure and function of multisubstrate flavin-containing monooxygenases.
    Ziegler DM
    Annu Rev Pharmacol Toxicol; 1993; 33():179-99. PubMed ID: 8494339
    [No Abstract]   [Full Text] [Related]  

  • 37. Flavin-containing monooxygenases: catalytic mechanism and substrate specificities.
    Ziegler DM
    Drug Metab Rev; 1988; 19(1):1-32. PubMed ID: 3293953
    [No Abstract]   [Full Text] [Related]  

  • 38. Deciphering indolocarbazole and enediyne aminodideoxypentose biosynthesis through comparative genomics: insights from the AT2433 biosynthetic locus.
    Gao Q; Zhang C; Blanchard S; Thorson JS
    Chem Biol; 2006 Jul; 13(7):733-43. PubMed ID: 16873021
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enzymatic generation of the chromopyrrolic acid scaffold of rebeccamycin by the tandem action of RebO and RebD.
    Howard-Jones AR; Walsh CT
    Biochemistry; 2005 Dec; 44(48):15652-63. PubMed ID: 16313168
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enzymatic assembly of the bis-indole core of rebeccamycin.
    Nishizawa T; Grüschow S; Jayamaha DH; Nishizawa-Harada C; Sherman DH
    J Am Chem Soc; 2006 Jan; 128(3):724-5. PubMed ID: 16417354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.