These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 21291221)

  • 1. Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions.
    Liu A; Walther A; Ikkala O; Belova L; Berglund LA
    Biomacromolecules; 2011 Mar; 12(3):633-41. PubMed ID: 21291221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clay nanopaper composites of nacre-like structure based on montmorrilonite and cellulose nanofibers-Improvements due to chitosan addition.
    Liu A; Berglund LA
    Carbohydr Polym; 2012 Jan; 87(1):53-60. PubMed ID: 34662999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong and tough cellulose nanopaper with high specific surface area and porosity.
    Sehaqui H; Zhou Q; Ikkala O; Berglund LA
    Biomacromolecules; 2011 Oct; 12(10):3638-44. PubMed ID: 21888417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oriented clay nanopaper from biobased components--mechanisms for superior fire protection properties.
    Carosio F; Kochumalayil J; Cuttica F; Camino G; Berglund L
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5847-56. PubMed ID: 25723913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Luminescent and transparent nanopaper based on rare-earth up-converting nanoparticle grafted nanofibrillated cellulose derived from garlic skin.
    Zhao J; Wei Z; Feng X; Miao M; Sun L; Cao S; Shi L; Fang J
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):14945-51. PubMed ID: 25116651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stretchable and strong cellulose nanopaper structures based on polymer-coated nanofiber networks: an alternative to nonwoven porous membranes from electrospinning.
    Sehaqui H; Morimune S; Nishino T; Berglund LA
    Biomacromolecules; 2012 Nov; 13(11):3661-7. PubMed ID: 23046114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic toughening of bioinspired poly(vinyl alcohol)-clay-nanofibrillar cellulose artificial nacre.
    Wang J; Cheng Q; Lin L; Jiang L
    ACS Nano; 2014 Mar; 8(3):2739-45. PubMed ID: 24506706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile method for stiff, tough, and strong nanocomposites by direct exfoliation of multilayered graphene into native nanocellulose matrix.
    Malho JM; Laaksonen P; Walther A; Ikkala O; Linder MB
    Biomacromolecules; 2012 Apr; 13(4):1093-9. PubMed ID: 22372697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid films of chitosan, cellulose nanofibrils and boric acid: Flame retardancy, optical and thermo-mechanical properties.
    Uddin KMA; Ago M; Rojas OJ
    Carbohydr Polym; 2017 Dec; 177():13-21. PubMed ID: 28962751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological and thermal properties of cellulose-montmorillonite nanocomposites.
    Cerruti P; Ambrogi V; Postiglione A; Rychlý J; Matisová-Rychlá L; Carfagna C
    Biomacromolecules; 2008 Nov; 9(11):3004-13. PubMed ID: 18842055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures.
    Sehaqui H; Liu A; Zhou Q; Berglund LA
    Biomacromolecules; 2010 Sep; 11(9):2195-8. PubMed ID: 20698565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing.
    Sehaqui H; Ezekiel Mushi N; Morimune S; Salajkova M; Nishino T; Berglund LA
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):1043-9. PubMed ID: 22257144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recyclable nanocomposites of well-dispersed 2D layered silicates in cellulose nanofibril (CNF) matrix.
    Li L; Maddalena L; Nishiyama Y; Carosio F; Ogawa Y; Berglund LA
    Carbohydr Polym; 2022 Mar; 279():119004. PubMed ID: 34980351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose.
    Lee KY; Tammelin T; Schulfter K; Kiiskinen H; Samela J; Bismarck A
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4078-86. PubMed ID: 22839594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifunctional nanoclay hybrids of high toughness, thermal, and barrier performances.
    Sehaqui H; Kochumalayil J; Liu A; Zimmermann T; Berglund LA
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7613-20. PubMed ID: 23838433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastrong and high gas-barrier nanocellulose/clay-layered composites.
    Wu CN; Saito T; Fujisawa S; Fukuzumi H; Isogai A
    Biomacromolecules; 2012 Jun; 13(6):1927-32. PubMed ID: 22568705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulose-clay layered nanocomposite films fabricated from aqueous cellulose/LiOH/urea solution.
    Yang Q; Wu CN; Saito T; Isogai A
    Carbohydr Polym; 2014 Jan; 100():179-84. PubMed ID: 24188852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flame retardancy of polyaniline-deposited paper composites prepared via in situ polymerization.
    Wu X; Qian X; An X
    Carbohydr Polym; 2013 Jan; 92(1):435-40. PubMed ID: 23218317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylated Cellulose Nanofibrils: A Renewable Nanomaterial for the Preparation of Intrinsically Flame-Retardant Materials.
    Ghanadpour M; Carosio F; Larsson PT; Wågberg L
    Biomacromolecules; 2015 Oct; 16(10):3399-410. PubMed ID: 26402379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellulose nanopaper structures of high toughness.
    Henriksson M; Berglund LA; Isaksson P; Lindström T; Nishino T
    Biomacromolecules; 2008 Jun; 9(6):1579-85. PubMed ID: 18498189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.