BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 21291244)

  • 1. Evolutionary screening of collagen-like peptides that nucleate hydroxyapatite crystals.
    Chung WJ; Kwon KY; Song J; Lee SW
    Langmuir; 2011 Jun; 27(12):7620-8. PubMed ID: 21291244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of bone-like composites via the polymer-induced liquid-precursor (PILP) process. Part 1: influence of polymer molecular weight.
    Jee SS; Thula TT; Gower LB
    Acta Biomater; 2010 Sep; 6(9):3676-86. PubMed ID: 20359554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biologically inspired synthesis of bone-like composite: self-assembled collagen fibers/hydroxyapatite nanocrystals.
    Tampieri A; Celotti G; Landi E; Sandri M; Roveri N; Falini G
    J Biomed Mater Res A; 2003 Nov; 67(2):618-25. PubMed ID: 14566805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption and interactions of dentine phosphoprotein with hydroxyapatite and collagen.
    Milan AM; Sugars RV; Embery G; Waddington RJ
    Eur J Oral Sci; 2006 Jun; 114(3):223-31. PubMed ID: 16776772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A density functional theory study of the interaction of collagen peptides with hydroxyapatite surfaces.
    Almora-Barrios N; de Leeuw NH
    Langmuir; 2010 Sep; 26(18):14535-42. PubMed ID: 20731400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mineralization of synthetic polymer scaffolds: a bottom-up approach for the development of artificial bone.
    Song J; Malathong V; Bertozzi CR
    J Am Chem Soc; 2005 Mar; 127(10):3366-72. PubMed ID: 15755154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of nanoscale architecture in supramolecular templating of biomimetic hydroxyapatite mineralization.
    Newcomb CJ; Bitton R; Velichko YS; Snead ML; Stupp SI
    Small; 2012 Jul; 8(14):2195-202, 2194. PubMed ID: 22570174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials.
    Rusu VM; Ng CH; Wilke M; Tiersch B; Fratzl P; Peter MG
    Biomaterials; 2005 Sep; 26(26):5414-26. PubMed ID: 15814140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A collagen sponge incorporating a hydroxyapatite/chondroitinsulfate composite as a scaffold for cartilage tissue engineering.
    Ohyabu Y; Adegawa T; Yoshioka T; Ikoma T; Shinozaki K; Uemura T; Tanaka J
    J Biomater Sci Polym Ed; 2009; 20(13):1861-74. PubMed ID: 19793444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oriented Crystallization of Hydroxyapatite in Self-Assembled Peptide Fibrils as a Bonelike Material.
    Shao C; Zhang Z; Jin W; Zhang Z; Jin B; Jiang S; Pan H; Tang R; De Yoreo JJ; Liu XY
    ACS Biomater Sci Eng; 2023 Apr; 9(4):1808-1814. PubMed ID: 34855358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of Proteins and Peptides to Create Organic-Hydroxyapatite Hybrids.
    Iijima K; Hashizume M
    Protein Pept Lett; 2018; 25(1):25-33. PubMed ID: 29268681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic fabrication of nano-carbonated hydroxyapatite/collagen composites for biomimetic bone grafts.
    Liao S; Ngiam M; Watari F; Ramakrishna S; Chan CK
    Bioinspir Biomim; 2007 Sep; 2(3):37-41. PubMed ID: 17848789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of hydroxyapatite-collagen composites as artificial bone materials.
    Yunoki S; Sugiura H; Ikoma T; Kondo E; Yasuda K; Tanaka J
    Biomed Mater; 2011 Feb; 6(1):015012. PubMed ID: 21242631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of crystalline phase on the biological properties of collagen-hydroxyapatite composites.
    Zhang L; Tang P; Xu M; Zhang W; Chai W; Wang Y
    Acta Biomater; 2010 Jun; 6(6):2189-99. PubMed ID: 20040387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mineral-matrix interactions in bone and cartilage.
    Boskey AL
    Clin Orthop Relat Res; 1992 Aug; (281):244-74. PubMed ID: 1323440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization of triple-helical structures of collagen peptides containing a Hyp-Thr-Gly, Hyp-Val-Gly, or Hyp-Ser-Gly sequence.
    Okuyama K; Miyama K; Morimoto T; Masakiyo K; Mizuno K; Bächinger HP
    Biopolymers; 2011 Sep; 95(9):628-40. PubMed ID: 21442606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic mineralization of woven bone-like nanocomposites: role of collagen cross-links.
    Li Y; Thula TT; Jee S; Perkins SL; Aparicio C; Douglas EP; Gower LB
    Biomacromolecules; 2012 Jan; 13(1):49-59. PubMed ID: 22133238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteogenesis imperfecta collagen-like peptides: self-assembly and mineralization on surfaces.
    Xu P; Huang J; Cebe P; Kaplan DL
    Biomacromolecules; 2008 Jun; 9(6):1551-7. PubMed ID: 18498187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical study of bone sialoprotein in bone biomineralization.
    Yang Y; Mkhonto D; Cui Q; Sahai N
    Cells Tissues Organs; 2011; 194(2-4):182-7. PubMed ID: 21597272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The folding mechanism of collagen-like model peptides explored through detailed molecular simulations.
    Stultz CM
    Protein Sci; 2006 Sep; 15(9):2166-77. PubMed ID: 16943446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.