These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 21291273)

  • 21. Conceptual modeling for identification of worst case conditions in environmental risk assessment of nanomaterials using nZVI and C60 as case studies.
    Grieger KD; Hansen SF; Sørensen PB; Baun A
    Sci Total Environ; 2011 Sep; 409(19):4109-24. PubMed ID: 21737121
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transport and deposition of polymer-modified Fe0 nanoparticles in 2-D heterogeneous porous media: effects of particle concentration, Fe0 content, and coatings.
    Phenrat T; Cihan A; Kim HJ; Mital M; Illangasekare T; Lowry GV
    Environ Sci Technol; 2010 Dec; 44(23):9086-93. PubMed ID: 21058703
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials.
    Kirschling TL; Gregory KB; Minkley EG; Lowry GV; Tilton RD
    Environ Sci Technol; 2010 May; 44(9):3474-80. PubMed ID: 20350000
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nitrate removal by entrapped zero-valent iron nanoparticles in calcium alginate.
    Krajangpan S; Bermudez JJ; Bezbaruah AN; Chisholm BJ; Khan E
    Water Sci Technol; 2008; 58(11):2215-22. PubMed ID: 19092199
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil.
    El-Temsah YS; Joner EJ
    Environ Toxicol; 2012 Jan; 27(1):42-9. PubMed ID: 20549639
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toxicity assessment of zero valent iron nanoparticles on Artemia salina.
    Kumar D; Roy R; Parashar A; Raichur AM; Chandrasekaran N; Mukherjee A; Mukherjee A
    Environ Toxicol; 2017 May; 32(5):1617-1627. PubMed ID: 28101988
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of surface modification on the toxicity of zerovalent iron nanoparticles in aquatic and terrestrial organisms.
    Yoon H; Pangging M; Jang MH; Hwang YS; Chang YS
    Ecotoxicol Environ Saf; 2018 Nov; 163():436-443. PubMed ID: 30075446
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead.
    Kim H; Hong HJ; Jung J; Kim SH; Yang JW
    J Hazard Mater; 2010 Apr; 176(1-3):1038-43. PubMed ID: 20042289
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of nano zero-valent iron on oxidation-reduction potential.
    Shi Z; Nurmi JT; Tratnyek PG
    Environ Sci Technol; 2011 Feb; 45(4):1586-92. PubMed ID: 21204580
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduction of nitrate by resin-supported nanoscale zero-valent iron.
    Park H; Park YM; Yoo KM; Lee SH
    Water Sci Technol; 2009; 59(11):2153-7. PubMed ID: 19494454
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removal of atrazine by nanoscale zero valent iron supported on organobentonite.
    Zhang Y; Li Y; Zheng X
    Sci Total Environ; 2011 Jan; 409(3):625-30. PubMed ID: 21093019
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching.
    Klimkova S; Cernik M; Lacinova L; Filip J; Jancik D; Zboril R
    Chemosphere; 2011 Feb; 82(8):1178-84. PubMed ID: 21193219
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos.
    Asharani PV; Lianwu Y; Gong Z; Valiyaveettil S
    Nanotoxicology; 2011 Mar; 5(1):43-54. PubMed ID: 21417687
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron.
    Shi LN; Zhang X; Chen ZL
    Water Res; 2011 Jan; 45(2):886-92. PubMed ID: 20950833
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents.
    Reinsch BC; Forsberg B; Penn RL; Kim CS; Lowry GV
    Environ Sci Technol; 2010 May; 44(9):3455-61. PubMed ID: 20380376
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms of toxicity of di(2-ethylhexyl) phthalate on the reproductive health of male zebrafish.
    Uren-Webster TM; Lewis C; Filby AL; Paull GC; Santos EM
    Aquat Toxicol; 2010 Sep; 99(3):360-9. PubMed ID: 20561692
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Environmental application and ecological significance of nano-zero valent iron.
    Yirsaw BD; Megharaj M; Chen Z; Naidu R
    J Environ Sci (China); 2016 Jun; 44():88-98. PubMed ID: 27266305
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: a molecular approach.
    Fajardo C; Ortíz LT; Rodríguez-Membibre ML; Nande M; Lobo MC; Martin M
    Chemosphere; 2012 Feb; 86(8):802-8. PubMed ID: 22169206
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combined toxicity of mercury, copper and cadmium on embryogenesis and early larval stages of the Mytilus galloprovincialis.
    Prato E; Biandolino F
    Environ Technol; 2007 Aug; 28(8):915-20. PubMed ID: 17879850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.