These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 21291284)

  • 21. Binding studies and structure determination of the recombinantly produced type-II 3-dehydroquinate dehydratase from Acinetobacter baumannii.
    Iqbal N; Kumar M; Sharma P; Yadav SP; Kaur P; Sharma S; Singh TP
    Int J Biol Macromol; 2017 Jan; 94(Pt A):459-465. PubMed ID: 27769928
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structure of aldoxime dehydratase and its catalytic mechanism involved in carbon-nitrogen triple-bond synthesis.
    Nomura J; Hashimoto H; Ohta T; Hashimoto Y; Wada K; Naruta Y; Oinuma K; Kobayashi M
    Proc Natl Acad Sci U S A; 2013 Feb; 110(8):2810-5. PubMed ID: 23382199
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The crystal structure of D-xylonate dehydratase reveals functional features of enzymes from the Ilv/ED dehydratase family.
    Rahman MM; Andberg M; Koivula A; Rouvinen J; Hakulinen N
    Sci Rep; 2018 Jan; 8(1):865. PubMed ID: 29339766
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Active site labeling of the shikimate pathway enzyme, dehydroquinase. Evidence for a common substrate binding site within dehydroquinase and dehydroquinate synthase.
    Kleanthous C; Campbell DG; Coggins JR
    J Biol Chem; 1990 Jul; 265(19):10929-34. PubMed ID: 2193027
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates.
    Basarab GS; Steffens JJ; Wawrzak Z; Schwartz RS; Lundqvist T; Jordan DB
    Biochemistry; 1999 May; 38(19):6012-24. PubMed ID: 10320327
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The structure of (3R)-hydroxyacyl-acyl carrier protein dehydratase (FabZ) from Pseudomonas aeruginosa.
    Kimber MS; Martin F; Lu Y; Houston S; Vedadi M; Dharamsi A; Fiebig KM; Schmid M; Rock CO
    J Biol Chem; 2004 Dec; 279(50):52593-602. PubMed ID: 15371447
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutational and structural analysis of cobalt-containing nitrile hydratase on substrate and metal binding.
    Miyanaga A; Fushinobu S; Ito K; Shoun H; Wakagi T
    Eur J Biochem; 2004 Jan; 271(2):429-38. PubMed ID: 14717710
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural and kinetic analysis of Escherichia coli GDP-mannose 4,6 dehydratase provides insights into the enzyme's catalytic mechanism and regulation by GDP-fucose.
    Somoza JR; Menon S; Schmidt H; Joseph-McCarthy D; Dessen A; Stahl ML; Somers WS; Sullivan FX
    Structure; 2000 Feb; 8(2):123-35. PubMed ID: 10673432
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the wild-type form of 4a-carbinolamine dehydratase and two naturally occurring mutants associated with hyperphenylalaninemia.
    Johnen G; Kowlessur D; Citron BA; Kaufman S
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12384-8. PubMed ID: 8618906
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The crystal structure of dTDP-D-Glucose 4,6-dehydratase (RmlB) from Salmonella enterica serovar Typhimurium, the second enzyme in the dTDP-l-rhamnose pathway.
    Allard ST; Giraud MF; Whitfield C; Graninger M; Messner P; Naismith JH
    J Mol Biol; 2001 Mar; 307(1):283-95. PubMed ID: 11243820
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kemp Elimination Catalyzed by Naturally Occurring Aldoxime Dehydratases.
    Miao Y; Metzner R; Asano Y
    Chembiochem; 2017 Mar; 18(5):451-454. PubMed ID: 28120515
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure of EvaA: a paradigm for sugar 2,3-dehydratases.
    Kubiak RL; Thoden JB; Holden HM
    Biochemistry; 2013 Mar; 52(12):2078-88. PubMed ID: 23473392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanistic Studies of the
    Mydy LS; Hoppe RW; Hagemann TM; Schwabacher AW; Silvaggi NR
    Biochemistry; 2019 Oct; 58(40):4136-4147. PubMed ID: 31524380
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biophysical and kinetic analysis of wild-type and site-directed mutants of the isolated and native dehydroquinate synthase domain of the AROM protein.
    Park A; Lamb HK; Nichols C; Moore JD; Brown KA; Cooper A; Charles IG; Stammers DK; Hawkins AR
    Protein Sci; 2004 Aug; 13(8):2108-19. PubMed ID: 15273308
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analyzing the catalytic role of active site residues in the Fe-type nitrile hydratase from Comamonas testosteroni Ni1.
    Martinez S; Wu R; Krzywda K; Opalka V; Chan H; Liu D; Holz RC
    J Biol Inorg Chem; 2015 Jul; 20(5):885-94. PubMed ID: 26077812
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probing catalysis by Escherichia coli dTDP-glucose-4,6-dehydratase: identification and preliminary characterization of functional amino acid residues at the active site.
    Hegeman AD; Gross JW; Frey PA
    Biochemistry; 2001 Jun; 40(22):6598-610. PubMed ID: 11380254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How essential is the 'essential' active-site lysine in dihydrodipicolinate synthase?
    Soares da Costa TP; Muscroft-Taylor AC; Dobson RC; Devenish SR; Jameson GB; Gerrard JA
    Biochimie; 2010 Jul; 92(7):837-45. PubMed ID: 20353808
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolution of enzymatic activities in the enolase superfamily: L-talarate/galactarate dehydratase from Salmonella typhimurium LT2.
    Yew WS; Fedorov AA; Fedorov EV; Almo SC; Gerlt JA
    Biochemistry; 2007 Aug; 46(33):9564-77. PubMed ID: 17649980
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural investigation of inhibitor designs targeting 3-dehydroquinate dehydratase from the shikimate pathway of Mycobacterium tuberculosis.
    Dias MV; Snee WC; Bromfield KM; Payne RJ; Palaninathan SK; Ciulli A; Howard NI; Abell C; Sacchettini JC; Blundell TL
    Biochem J; 2011 Jun; 436(3):729-39. PubMed ID: 21410435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Charge neutralization in the active site of the catalytic trimer of aspartate transcarbamoylase promotes diverse structural changes.
    Endrizzi JA; Beernink PT
    Protein Sci; 2017 Nov; 26(11):2221-2228. PubMed ID: 28833948
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.