BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 21291359)

  • 1. Cell adhesion molecules in gene and cell therapy approaches for nervous system repair.
    Lavdas AA; Papastefanaki F; Thomaidou D; Matsas R
    Curr Gene Ther; 2011 Apr; 11(2):90-100. PubMed ID: 21291359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Schwann cell transplantation for CNS repair.
    Lavdas AA; Papastefanaki F; Thomaidou D; Matsas R
    Curr Med Chem; 2008; 15(2):151-60. PubMed ID: 18220770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards personalized cell-replacement therapies for brain repair.
    Lavdas AA; Matsas R
    Per Med; 2009 May; 6(3):293-313. PubMed ID: 29783512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The potential therapeutic applications of olfactory ensheathing cells in regenerative medicine.
    Chou RH; Lu CY; ; Fan JR; Yu YL; Shyu WC
    Cell Transplant; 2014; 23(4-5):567-71. PubMed ID: 24816451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polysialylated neural cell adhesion molecule-positive CNS precursors generate both oligodendrocytes and Schwann cells to remyelinate the CNS after transplantation.
    Keirstead HS; Ben-Hur T; Rogister B; O'Leary MT; Dubois-Dalcq M; Blakemore WF
    J Neurosci; 1999 Sep; 19(17):7529-36. PubMed ID: 10460259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immortalized neural progenitor cells for CNS gene transfer and repair.
    Martínez-Serrano A; Björklund A
    Trends Neurosci; 1997 Nov; 20(11):530-8. PubMed ID: 9364668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Do Neural Stem Cells Have a Choice? Heterogenic Outcome of Cell Fate Acquisition in Different Injury Models.
    Beyer F; Samper Agrelo I; Küry P
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30669690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current progress in the derivation and therapeutic application of neural stem cells.
    Tang Y; Yu P; Cheng L
    Cell Death Dis; 2017 Oct; 8(10):e3108. PubMed ID: 29022921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Central and peripheral nerve regeneration by transplantation of Schwann cells and transdifferentiated bone marrow stromal cells.
    Dezawa M
    Anat Sci Int; 2002 Mar; 77(1):12-25. PubMed ID: 12418080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of cell-cell interactions for neural tissue engineering: Potential therapeutic applications of cell adhesion molecules in nerve regeneration.
    Chooi WH; Chew SY
    Biomaterials; 2019 Mar; 197():327-344. PubMed ID: 30690420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined transplantation of neural stem cells and olfactory ensheathing cells for the repair of spinal cord injuries.
    Ao Q; Wang AJ; Chen GQ; Wang SJ; Zuo HC; Zhang XF
    Med Hypotheses; 2007; 69(6):1234-7. PubMed ID: 17548168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of oligodendrocytes and oligodendrocyte progenitors in CNS remyelination.
    Keirstead HS; Blakemore WF
    Adv Exp Med Biol; 1999; 468():183-97. PubMed ID: 10635029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Indications and prospects of neural transplantation for chronic neurological diseases.
    Vadori M; Denaro L; D'Avella D; Cozzi E
    Curr Opin Organ Transplant; 2016 Oct; 21(5):490-6. PubMed ID: 27517509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell therapy for spinal cord injury with olfactory ensheathing glia cells (OECs).
    Gómez RM; Sánchez MY; Portela-Lomba M; Ghotme K; Barreto GE; Sierra J; Moreno-Flores MT
    Glia; 2018 Jul; 66(7):1267-1301. PubMed ID: 29330870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Olfactory ensheathing glia transplantation: a therapy to promote repair in the mammalian central nervous system.
    Santos-Benito FF; Ramón-Cueto A
    Anat Rec B New Anat; 2003 Mar; 271(1):77-85. PubMed ID: 12619089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transplantation of olfactory ensheathing cells as adjunct cell therapy for peripheral nerve injury.
    Radtke C; Wewetzer K; Reimers K; Vogt PM
    Cell Transplant; 2011; 20(2):145-52. PubMed ID: 20719095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Schwann cells engineered to express the cell adhesion molecule L1 accelerate myelination and motor recovery after spinal cord injury.
    Lavdas AA; Chen J; Papastefanaki F; Chen S; Schachner M; Matsas R; Thomaidou D
    Exp Neurol; 2010 Jan; 221(1):206-16. PubMed ID: 19909742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myelinogenic Plasticity of Oligodendrocyte Precursor Cells following Spinal Cord Contusion Injury.
    Assinck P; Duncan GJ; Plemel JR; Lee MJ; Stratton JA; Manesh SB; Liu J; Ramer LM; Kang SH; Bergles DE; Biernaskie J; Tetzlaff W
    J Neurosci; 2017 Sep; 37(36):8635-8654. PubMed ID: 28760862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boundary cap cells are highly competitive for CNS remyelination: fast migration and efficient differentiation in PNS and CNS myelin-forming cells.
    Zujovic V; Thibaud J; Bachelin C; Vidal M; Coulpier F; Charnay P; Topilko P; Baron-Van Evercooren A
    Stem Cells; 2010 Mar; 28(3):470-9. PubMed ID: 20039366
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.