BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 21291973)

  • 1. Influence of compression on water sorption, glass transition, and enthalpy relaxation behavior of freeze-dried amorphous sugar matrices.
    Imamura K; Kagotani R; Nomura M; Tanaka K; Kinugawa K; Nakanishi K
    Int J Pharm; 2011 Apr; 408(1-2):76-83. PubMed ID: 21291973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneity of the state and functionality of water molecules sorbed in an amorphous sugar matrix.
    Imamura K; Kagotani R; Nomura M; Kinugawa K; Nakanishi K
    Carbohydr Res; 2012 Apr; 351():108-13. PubMed ID: 22313679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the physical stability of freeze-dried amorphous sugar matrices by compression at several hundreds MPa.
    Kagotani R; Kinugawa K; Nomura M; Imanaka H; Ishida N; Imamura K
    J Pharm Sci; 2013 Jul; 102(7):2187-97. PubMed ID: 23625861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. True density analysis of a freeze-dried amorphous sugar matrix.
    Imamura K; Maruyama Y; Tanaka K; Yokoyama T; Imanaka H; Nakanishi K
    J Pharm Sci; 2008 Jul; 97(7):2789-97. PubMed ID: 17918722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water sorption, glass transition, and protein-stabilizing behavior of an amorphous sucrose matrix combined with various materials.
    Imamura K; Yokoyama T; Fukushima A; Kinuhata M; Nakanishi K
    J Pharm Sci; 2010 Nov; 99(11):4669-77. PubMed ID: 20845464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supercritical fluid drying of carbohydrates: selection of suitable excipients and process conditions.
    Bouchard A; Jovanović N; Hofland GW; Jiskoot W; Mendes E; Crommelin DJ; Witkamp GJ
    Eur J Pharm Biopharm; 2008 Mar; 68(3):781-94. PubMed ID: 17702554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the moisture sorption behavior of amorphous sucrose using a dynamic humidity generating instrument.
    Yu X; Kappes SM; Bello-Perez LA; Schmidt SJ
    J Food Sci; 2008 Jan; 73(1):E25-35. PubMed ID: 18211350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the molecular distribution of drugs in glassy solid dispersions at the nano-meter scale, using differential scanning calorimetry and gravimetric water vapour sorption techniques.
    van Drooge DJ; Hinrichs WL; Visser MR; Frijlink HW
    Int J Pharm; 2006 Mar; 310(1-2):220-9. PubMed ID: 16427226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of low levels of amorphous content in inhalation grade lactose by moisture sorption isotherms.
    Vollenbroek J; Hebbink GA; Ziffels S; Steckel H
    Int J Pharm; 2010 Aug; 395(1-2):62-70. PubMed ID: 20493937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freeze-drying of proteins with glass-forming oligosaccharide-derived sugar alcohols.
    Kadoya S; Fujii K; Izutsu K; Yonemochi E; Terada K; Yomota C; Kawanishi T
    Int J Pharm; 2010 Apr; 389(1-2):107-13. PubMed ID: 20097277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glass transition and time-dependent crystallization behavior of dehydration bioprotectant sugars.
    Schebor C; Mazzobre MF; Buera Mdel P
    Carbohydr Res; 2010 Jan; 345(2):303-8. PubMed ID: 19962131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of types of sugar on the stabilization of protein in the dried state.
    Imamura K; Ogawa T; Sakiyama T; Nakanishi K
    J Pharm Sci; 2003 Feb; 92(2):266-74. PubMed ID: 12532376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of carbohydrate-protein matrices for nutrient delivery.
    Zhou Y; Roos YH
    J Food Sci; 2011 May; 76(4):E368-76. PubMed ID: 22417357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of salts on the properties of aqueous sugar systems, in relation to biomaterial stabilization. 1. Water sorption behavior and ice crystallization/melting.
    Mazzobre MF; Longinotti MP; Corti HR; Buera MP
    Cryobiology; 2001 Nov; 43(3):199-210. PubMed ID: 11888214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmaceutical micro-particles give amorphous sucrose higher physical stability.
    Hellrup J; Mahlin D
    Int J Pharm; 2011 May; 409(1-2):96-103. PubMed ID: 21356288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability and plasticizing and crystallization effects of vitamins in amorphous sugar systems.
    Zhou Y; Roos YH
    J Agric Food Chem; 2012 Feb; 60(4):1075-83. PubMed ID: 22220563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of the onset of crystallization of amorphous sucrose below the calorimetric glass transition temperature from correlations with mobility.
    Bhugra C; Rambhatla S; Bakri A; Duddu SP; Miller DP; Pikal MJ; Lechuga-Ballesteros D
    J Pharm Sci; 2007 May; 96(5):1258-69. PubMed ID: 17455303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of spray-dried co-precipitate of amorphous celecoxib containing storage and compression stabilizers.
    Dhumal RS; Shimpi SL; Paradkar AR
    Acta Pharm; 2007 Sep; 57(3):287-300. PubMed ID: 17878109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of temperature on water vapor sorption by some amorphous pharmaceutical sugars.
    Hancock BC; Dalton CR
    Pharm Dev Technol; 1999 Jan; 4(1):125-31. PubMed ID: 10027221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impacts of compression on crystallization behavior of freeze-dried amorphous sucrose.
    Imamura K; Nomura M; Tanaka K; Kataoka N; Oshitani J; Imanaka H; Nakanishi K
    J Pharm Sci; 2010 Mar; 99(3):1452-63. PubMed ID: 19670297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.