BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 21292043)

  • 1. The impact of hydrogen sulfide (H₂S) on neurotransmitter release from the cat carotid body.
    Fitzgerald RS; Shirahata M; Chang I; Kostuk E; Kiihl S
    Respir Physiol Neurobiol; 2011 May; 176(3):80-9. PubMed ID: 21292043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscarinic modulation of hypoxia-induced release of catecholamines from the cat carotid body.
    Wang HY; Fitzgerald RS
    Brain Res; 2002 Feb; 927(2):122-37. PubMed ID: 11821006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of hypoxia and low glucose on the release of acetylcholine and ATP from the incubated cat carotid body.
    Fitzgerald RS; Shirahata M; Chang I; Kostuk E
    Brain Res; 2009 May; 1270():39-44. PubMed ID: 19285968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of a nitric oxide donor, sodium nitroprusside, on the release of acetylcholine from the in vitro cat carotid body.
    Fitzgerald RS; Shirahata M; Chang I
    Neurosci Lett; 2005 Sep; 385(2):148-52. PubMed ID: 15951109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of PCO2 and H+ on the release of acetylcholine from the cat carotid body.
    Fitzgerald RS; Shirahata M; Chang I
    Neurosci Lett; 2006 Apr; 397(3):205-9. PubMed ID: 16406346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetylcholine is released from in vitro cat carotid bodies during hypoxic stimulation.
    Fitzgerald RS; Shirahata M; Wang HY
    Adv Exp Med Biol; 2000; 475():485-94. PubMed ID: 10849689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetylcholine release from the carotid body by hypoxia: evidence for the involvement of autoinhibitory receptors.
    Kim DK; Prabhakar NR; Kumar GK
    J Appl Physiol (1985); 2004 Jan; 96(1):376-83. PubMed ID: 12923121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A crucial role for hydrogen sulfide in oxygen sensing via modulating large conductance calcium-activated potassium channels.
    Li Q; Sun B; Wang X; Jin Z; Zhou Y; Dong L; Jiang LH; Rong W
    Antioxid Redox Signal; 2010 May; 12(10):1179-89. PubMed ID: 19803741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endogenous H2S is required for hypoxic sensing by carotid body glomus cells.
    Makarenko VV; Nanduri J; Raghuraman G; Fox AP; Gadalla MM; Kumar GK; Snyder SH; Prabhakar NR
    Am J Physiol Cell Physiol; 2012 Nov; 303(9):C916-23. PubMed ID: 22744006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP- and ACh-induced responses in isolated cat petrosal ganglion neurons.
    Alcayaga C; Varas R; Valdés V; Cerpa V; Arroyo J; Iturriaga R; Alcayaga J
    Brain Res; 2007 Feb; 1131(1):60-7. PubMed ID: 17184746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of adenosine on the release of acetylcholine, dopamine, and norepinephrine from the cat carotid body.
    Fitzgerald RS; Shirahata M; Wang HY; Balbir A; Chang I
    Neurosci Lett; 2004 Sep; 367(3):304-8. PubMed ID: 15337254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of adenosine and an A2A adenosine receptor agonist on the ACh-induced increase in intracellular calcium of the glomus cells of the cat carotid body.
    Fitzgerald RS; Shirahata M; Chang I
    Brain Res; 2009 Dec; 1301():20-33. PubMed ID: 19761761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The human carotid body releases acetylcholine, ATP and cytokines during hypoxia.
    Kåhlin J; Mkrtchian S; Ebberyd A; Hammarstedt-Nordenvall L; Nordlander B; Yoshitake T; Kehr J; Prabhakar N; Poellinger L; Fagerlund MJ; Eriksson LI
    Exp Physiol; 2014 Aug; 99(8):1089-98. PubMed ID: 24887113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetylcholine release from cat carotid bodies.
    Fitzgerald RS; Shirahata M; Wang HY
    Brain Res; 1999 Sep; 841(1-2):53-61. PubMed ID: 10546987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CaV3.2 T-type Ca²⁺ channels in H₂S-mediated hypoxic response of the carotid body.
    Makarenko VV; Peng YJ; Yuan G; Fox AP; Kumar GK; Nanduri J; Prabhakar NR
    Am J Physiol Cell Physiol; 2015 Jan; 308(2):C146-54. PubMed ID: 25377087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen sulfide (H(2)S): a physiologic mediator of carotid body response to hypoxia.
    Prabhakar NR
    Adv Exp Med Biol; 2012; 758():109-13. PubMed ID: 23080150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of M1 and M2 muscarinic acetylcholine receptors in the cat carotid body chemosensory system.
    Shirahata M; Hirasawa S; Okumura M; Mendoza JA; Okumura A; Balbir A; Fitzgerald RS
    Neuroscience; 2004; 128(3):635-44. PubMed ID: 15381291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP inhibits the hypoxia response in type I cells of rat carotid bodies.
    Xu J; Xu F; Tse FW; Tse A
    J Neurochem; 2005 Mar; 92(6):1419-30. PubMed ID: 15748160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L-arginine's effect on the hypoxia-induced release of acetylcholine from the in vitro cat carotid body.
    Fitzgerald RS; Shirahata M; Chang I; Balbir A
    Respir Physiol Neurobiol; 2005 May; 147(1):11-7. PubMed ID: 15848119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurotransmission in the carotid body: transmitters and modulators between glomus cells and petrosal ganglion nerve terminals.
    Iturriaga R; Alcayaga J
    Brain Res Brain Res Rev; 2004 Dec; 47(1-3):46-53. PubMed ID: 15572162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.