These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 21292164)

  • 21. Role of ribosomal protein L27 in peptidyl transfer.
    Trobro S; Aqvist J
    Biochemistry; 2008 Apr; 47(17):4898-906. PubMed ID: 18393533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational analysis of nascent peptides that induce ribosome stalling and their proteomic distribution in
    Sabi R; Tuller T
    RNA; 2017 Jul; 23(7):983-994. PubMed ID: 28363900
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms of SecM-mediated stalling in the ribosome.
    Gumbart J; Schreiner E; Wilson DN; Beckmann R; Schulten K
    Biophys J; 2012 Jul; 103(2):331-41. PubMed ID: 22853911
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Peptide-mediated macrolide resistance reveals possible specific interactions in the nascent peptide exit tunnel.
    Vimberg V; Xiong L; Bailey M; Tenson T; Mankin A
    Mol Microbiol; 2004 Oct; 54(2):376-85. PubMed ID: 15469510
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deregulation of translation due to post-transcriptional modification of rRNA explains why erm genes are inducible.
    Gupta P; Sothiselvam S; Vázquez-Laslop N; Mankin AS
    Nat Commun; 2013; 4():1984. PubMed ID: 23749080
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional sites of interaction between release factor RF1 and the ribosome.
    Wilson KS; Ito K; Noller HF; Nakamura Y
    Nat Struct Biol; 2000 Oct; 7(10):866-70. PubMed ID: 11017194
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A peptide deformylase-ribosome complex reveals mechanism of nascent chain processing.
    Bingel-Erlenmeyer R; Kohler R; Kramer G; Sandikci A; Antolić S; Maier T; Schaffitzel C; Wiedmann B; Bukau B; Ban N
    Nature; 2008 Mar; 452(7183):108-11. PubMed ID: 18288106
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dual effect of chloramphenicol peptides on ribosome inhibition.
    Bougas A; Vlachogiannis IA; Gatos D; Arenz S; Dinos GP
    Amino Acids; 2017 May; 49(5):995-1004. PubMed ID: 28283906
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Critical 23S rRNA interactions for macrolide-dependent ribosome stalling on the ErmCL nascent peptide chain.
    Koch M; Willi J; Pradère U; Hall J; Polacek N
    Nucleic Acids Res; 2017 Jun; 45(11):6717-6728. PubMed ID: 28369621
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The geometry of the ribosomal polypeptide exit tunnel.
    Voss NR; Gerstein M; Steitz TA; Moore PB
    J Mol Biol; 2006 Jul; 360(4):893-906. PubMed ID: 16784753
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular basis for the ribosome functioning as an L-tryptophan sensor.
    Bischoff L; Berninghausen O; Beckmann R
    Cell Rep; 2014 Oct; 9(2):469-75. PubMed ID: 25310980
    [TBL] [Abstract][Full Text] [Related]  

  • 32. What are the roles of substrate-assisted catalysis and proximity effects in peptide bond formation by the ribosome?
    Sharma PK; Xiang Y; Kato M; Warshel A
    Biochemistry; 2005 Aug; 44(34):11307-14. PubMed ID: 16114867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The arginine attenuator peptide interferes with the ribosome peptidyl transferase center.
    Wei J; Wu C; Sachs MS
    Mol Cell Biol; 2012 Jul; 32(13):2396-406. PubMed ID: 22508989
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic identification of nascent peptides that induce ribosome stalling.
    Tanner DR; Cariello DA; Woolstenhulme CJ; Broadbent MA; Buskirk AR
    J Biol Chem; 2009 Dec; 284(50):34809-18. PubMed ID: 19840930
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of chirality of the sugar ring in the ribosomal peptide synthesis.
    Thirumoorthy K; Nandi N
    J Phys Chem B; 2008 Jul; 112(30):9187-95. PubMed ID: 18610967
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of antibiotic ligand in nascent peptide-dependent ribosome stalling.
    Vázquez-Laslop N; Klepacki D; Mulhearn DC; Ramu H; Krasnykh O; Franzblau S; Mankin AS
    Proc Natl Acad Sci U S A; 2011 Jun; 108(26):10496-501. PubMed ID: 21670252
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ribosome regulation by the nascent peptide.
    Lovett PS; Rogers EJ
    Microbiol Rev; 1996 Jun; 60(2):366-85. PubMed ID: 8801438
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient ribosomal peptidyl transfer critically relies on the presence of the ribose 2'-OH at A2451 of 23S rRNA.
    Erlacher MD; Lang K; Wotzel B; Rieder R; Micura R; Polacek N
    J Am Chem Soc; 2006 Apr; 128(13):4453-9. PubMed ID: 16569023
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reverse genetics-based biochemical studies of the ribosomal exit tunnel constriction region in eukaryotic ribosome stalling: spatial allocation of the regulatory nascent peptide at the constriction.
    Takamatsu S; Ohashi Y; Onoue N; Tajima Y; Imamichi T; Yonezawa S; Morimoto K; Onouchi H; Yamashita Y; Naito S
    Nucleic Acids Res; 2020 Feb; 48(4):1985-1999. PubMed ID: 31875230
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regional discrimination and propagation of local rearrangements along the ribosomal exit tunnel.
    Lu J; Deutsch C
    J Mol Biol; 2014 Dec; 426(24):4061-4073. PubMed ID: 25308341
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.