These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 21292393)

  • 1. Cr (III) bioremoval capacities of indigenous and adapted bacterial strains from Palar river basin.
    Sundar K; Mukherjee A; Sadiq M; Chandrasekaran N
    J Hazard Mater; 2011 Mar; 187(1-3):553-61. PubMed ID: 21292393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioremoval of trivalent chromium using Bacillus biofilms through continuous flow reactor.
    Sundar K; Sadiq IM; Mukherjee A; Chandrasekaran N
    J Hazard Mater; 2011 Nov; 196():44-51. PubMed ID: 21924829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromium removal from a real tanning effluent by autochthonous and allochthonous fungi.
    Prigione V; Zerlottin M; Refosco D; Tigini V; Anastasi A; Varese GC
    Bioresour Technol; 2009 Jun; 100(11):2770-6. PubMed ID: 19211244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The differential stress response of adapted chromite mine isolates Bacillus subtilis and Escherichia coli and its impact on bioremediation potential.
    Samuel J; Paul ML; Ravishankar H; Mathur A; Saha DP; Natarajan C; Mukherjee A
    Biodegradation; 2013 Nov; 24(6):829-42. PubMed ID: 23494520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cr(VI) uptake mechanism of Bacillus cereus.
    Chen Z; Huang Z; Cheng Y; Pan D; Pan X; Yu M; Pan Z; Lin Z; Guan X; Wu Z
    Chemosphere; 2012 Apr; 87(3):211-6. PubMed ID: 22225704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of chromium and pentachlorophenol from tannery effluents.
    Srivastava S; Ahmad AH; Thakur IS
    Bioresour Technol; 2007 Mar; 98(5):1128-32. PubMed ID: 16762546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro microcosm of co-cultured bacteria for the removal of hexavalent Cr and tannic acid: A mechanistic approach to study the impact of operational parameters.
    Chaudhary P; Beniwal V; Umar A; Kumar R; Sharma P; Kumar A; Al-Hadeethi Y; Chhokar V
    Ecotoxicol Environ Saf; 2021 Jan; 208():111484. PubMed ID: 33120265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-reduction of Cr(VI) by exopolysaccharides (EPS) from indigenous bacterial species of Sukinda chromite mine, India.
    Harish R; Samuel J; Mishra R; Chandrasekaran N; Mukherjee A
    Biodegradation; 2012 Jul; 23(4):487-96. PubMed ID: 22119897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of Cr(VI) reduction and Cr(III) immobilization mechanism by planktonic cells and biofilms of Bacillus subtilis ATCC-6633.
    Pan X; Liu Z; Chen Z; Cheng Y; Pan D; Shao J; Lin Z; Guan X
    Water Res; 2014 May; 55():21-9. PubMed ID: 24583840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of chromium(III) from tannery wastewater using activated carbon from sugar industrial waste.
    Fahim NF; Barsoum BN; Eid AE; Khalil MS
    J Hazard Mater; 2006 Aug; 136(2):303-9. PubMed ID: 16442717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility of using microalgal biomass cultured in domestic wastewater for the removal of chromium pollutants.
    Han X; Wong YS; Wong MH; Tam NF
    Water Environ Res; 2008 Jul; 80(7):647-53. PubMed ID: 18710148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hematite enhances the removal of Cr(VI) by Bacillus subtilis BSn5 from aquatic environment.
    Ma S; Song CS; Chen Y; Wang F; Chen HL
    Chemosphere; 2018 Oct; 208():579-585. PubMed ID: 29890496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies of chromium removal from tannery wastewaters by algae biosorbents, Spirogyra condensata and Rhizoclonium hieroglyphicum.
    Onyancha D; Mavura W; Ngila JC; Ongoma P; Chacha J
    J Hazard Mater; 2008 Oct; 158(2-3):605-14. PubMed ID: 18394792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Cr(VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity.
    Viti C; Pace A; Giovannetti L
    Curr Microbiol; 2003 Jan; 46(1):1-5. PubMed ID: 12432455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of chitosan-stabilized Fe(0) nanoparticles for removal of hexavalent chromium in water.
    Geng B; Jin Z; Li T; Qi X
    Sci Total Environ; 2009 Sep; 407(18):4994-5000. PubMed ID: 19545888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste.
    Megharaj M; Avudainayagam S; Naidu R
    Curr Microbiol; 2003 Jul; 47(1):51-4. PubMed ID: 12783193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromium(III) removal from water and wastewater using a carboxylate-functionalized cation exchanger prepared from a lignocellulosic residue.
    Anirudhan TS; Radhakrishnan PG
    J Colloid Interface Sci; 2007 Dec; 316(2):268-76. PubMed ID: 17905262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tea-industry waste activated carbon, as a novel adsorbent, for separation, preconcentration and speciation of chromium.
    Duran C; Ozdes D; Gundogdu A; Imamoglu M; Senturk HB
    Anal Chim Acta; 2011 Feb; 688(1):75-83. PubMed ID: 21296208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hexavalent chromium reduction by Bacillus sp. strain FM1 isolated from heavy-metal contaminated soil.
    Masood F; Malik A
    Bull Environ Contam Toxicol; 2011 Jan; 86(1):114-9. PubMed ID: 21181113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromium removal from electroplating wastewater by coir pith.
    Suksabye P; Thiravetyan P; Nakbanpote W; Chayabutra S
    J Hazard Mater; 2007 Mar; 141(3):637-44. PubMed ID: 16919872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.