These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 21292551)
1. Optimization of medium components and cultural variables for enhanced production of acidic high maltose-forming and Ca2+-independent α-amylase by Bacillus acidicola. Sharma A; Satyanarayana T J Biosci Bioeng; 2011 May; 111(5):550-3. PubMed ID: 21292551 [TBL] [Abstract][Full Text] [Related]
2. High maltose-forming, Ca2+-independent and acid stable α-amylase from a novel acidophilic bacterium, Bacillus acidicola. Sharma A; Satyanarayana T Biotechnol Lett; 2010 Oct; 32(10):1503-7. PubMed ID: 20559683 [TBL] [Abstract][Full Text] [Related]
3. Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens. Gangadharan D; Sivaramakrishnan S; Nampoothiri KM; Sukumaran RK; Pandey A Bioresour Technol; 2008 Jul; 99(11):4597-602. PubMed ID: 17761415 [TBL] [Abstract][Full Text] [Related]
4. Production of acid-stable and high-maltose-forming α-amylase of Bacillus acidicola by solid-state fermentation and immobilized cells and its applicability in baking. Sharma A; Satyanarayana T Appl Biochem Biotechnol; 2012 Nov; 168(5):1025-34. PubMed ID: 22907515 [TBL] [Abstract][Full Text] [Related]
5. The potential of brewer's spent grain to improve the production of α-amylase by Bacillus sp. KR-8104 in submerged fermentation system. Hashemi M; Razavi SH; Shojaosadati SA; Mousavi SM N Biotechnol; 2011 Feb; 28(2):165-72. PubMed ID: 20970528 [TBL] [Abstract][Full Text] [Related]
6. Improving production of hyperthermostable and high maltose-forming alpha-amylase by an extreme thermophile Geobacillus thermoleovorans using response surface methodology and its applications. Uma Maheswar Rao JL; Satyanarayana T Bioresour Technol; 2007 Jan; 98(2):345-52. PubMed ID: 16473003 [TBL] [Abstract][Full Text] [Related]
7. Statistical optimization of a high maltose-forming, hyperthermostable and Ca2+-independent alpha-amylase production by an extreme thermophile Geobacillus thermoleovorans using response surface methodology. Uma Maheswar Rao JL; Satyanarayana T J Appl Microbiol; 2003; 95(4):712-8. PubMed ID: 12969284 [TBL] [Abstract][Full Text] [Related]
8. Process parameters study of α-amylase production in a packed-bed bioreactor under solid-state fermentation with possibility of temperature monitoring. Derakhti S; Shojaosadati SA; Hashemi M; Khajeh K Prep Biochem Biotechnol; 2012; 42(3):203-16. PubMed ID: 22509847 [TBL] [Abstract][Full Text] [Related]
9. Dual feeding strategy for the production of alpha-amylase by Bacillus caldolyticus using complex media. Schwab K; Bader J; Brokamp C; Popović MK; Bajpai R; Berovic M N Biotechnol; 2009 Oct; 26(1-2):68-74. PubMed ID: 19439206 [TBL] [Abstract][Full Text] [Related]
10. Cloning and expression of acidstable, high maltose-forming, Ca2+-independent α-amylase from an acidophile Bacillus acidicola and its applicability in starch hydrolysis. Sharma A; Satyanarayana T Extremophiles; 2012 May; 16(3):515-22. PubMed ID: 22527045 [TBL] [Abstract][Full Text] [Related]
11. Production and properties of alpha-amylase from Bacillus sp. BKL20. Kubrak OI; Storey JM; Storey KB; Lushchak VI Can J Microbiol; 2010 Apr; 56(4):279-88. PubMed ID: 20453894 [TBL] [Abstract][Full Text] [Related]
12. Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett-Burman and response surface methodological approaches. Reddy LV; Wee YJ; Yun JS; Ryu HW Bioresour Technol; 2008 May; 99(7):2242-9. PubMed ID: 17596938 [TBL] [Abstract][Full Text] [Related]
13. Production of surfactant and detergent-stable, halophilic, and alkalitolerant alpha-amylase by a moderately halophilic Bacillus sp. Strain TSCVKK. Kiran KK; Chandra TS Appl Microbiol Biotechnol; 2008 Jan; 77(5):1023-31. PubMed ID: 17999060 [TBL] [Abstract][Full Text] [Related]
14. A marked enhancement in the production of a highly alkaline and thermostable pectinase by Bacillus pumilus dcsr1 in submerged fermentation by using statistical methods. Sharma DC; Satyanarayana T Bioresour Technol; 2006 Mar; 97(5):727-33. PubMed ID: 15936940 [TBL] [Abstract][Full Text] [Related]
15. Thermostable alpha-amylase production using Bacillus licheniformis NRRL B14368. Bose K; Das D Indian J Exp Biol; 1996 Dec; 34(12):1279-82. PubMed ID: 9246926 [TBL] [Abstract][Full Text] [Related]
16. Production of alpha-amylase with Aspergillus flavus on Amaranthus grains by solid-state fermentation. Viswanathan P; Surlikar NR J Basic Microbiol; 2001; 41(1):57-64. PubMed ID: 11314248 [TBL] [Abstract][Full Text] [Related]
17. Production of Ca Parashar D; Satyanarayana T Mol Biotechnol; 2016 Nov; 58(11):707-717. PubMed ID: 27568390 [TBL] [Abstract][Full Text] [Related]
18. Characteristics of a high maltose-forming, acid-stable, and Ca(2+)-independent α-amylase of the acidophilic Bacillus acidicola. Sharma A; Satyanarayana T Appl Biochem Biotechnol; 2013 Dec; 171(8):2053-64. PubMed ID: 24022779 [TBL] [Abstract][Full Text] [Related]
19. Alpha-amylase production by Bacillus subtilis CM3 in solid state fermentation using cassava fibrous residue. Swain MR; Ray RC J Basic Microbiol; 2007 Oct; 47(5):417-25. PubMed ID: 17910107 [TBL] [Abstract][Full Text] [Related]
20. [Optimization of cultivation conditions of the alpha-amylase producer Bacillus subtilis 147]. Avdiiuk KV; Varbanets' LD Mikrobiol Z; 2008; 70(1):10-6. PubMed ID: 18416149 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]