BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 21292838)

  • 1. Contribution of adenosine to compensatory dilation in hypoperfused contracting human muscles is independent of nitric oxide.
    Casey DP; Joyner MJ
    J Appl Physiol (1985); 2011 May; 110(5):1181-9. PubMed ID: 21292838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prostaglandins do not contribute to the nitric oxide-mediated compensatory vasodilation in hypoperfused exercising muscle.
    Casey DP; Joyner MJ
    Am J Physiol Heart Circ Physiol; 2011 Jul; 301(1):H261-8. PubMed ID: 21536852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NOS inhibition blunts and delays the compensatory dilation in hypoperfused contracting human muscles.
    Casey DP; Joyner MJ
    J Appl Physiol (1985); 2009 Dec; 107(6):1685-92. PubMed ID: 19729589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of nitric oxide and adenosine in the onset of vasodilation during dynamic forearm exercise.
    Casey DP; Mohamed EA; Joyner MJ
    Eur J Appl Physiol; 2013 Feb; 113(2):295-303. PubMed ID: 22692759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. α-Adrenergic Blockade Unmasks a Greater Compensatory Vasodilation in Hypoperfused Contracting Muscle.
    Casey DP; Joyner MJ
    Front Physiol; 2012; 3():271. PubMed ID: 22934025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide contributes to the augmented vasodilatation during hypoxic exercise.
    Casey DP; Madery BD; Curry TB; Eisenach JH; Wilkins BW; Joyner MJ
    J Physiol; 2010 Jan; 588(Pt 2):373-85. PubMed ID: 19948661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide-mediated vasodilation becomes independent of beta-adrenergic receptor activation with increased intensity of hypoxic exercise.
    Casey DP; Curry TB; Wilkins BW; Joyner MJ
    J Appl Physiol (1985); 2011 Mar; 110(3):687-94. PubMed ID: 21193565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ischemic exercise hyperemia in the human forearm: reproducibility and roles of adenosine and nitric oxide.
    Lopez MG; Silva BM; Joyner MJ; Casey DP
    Eur J Appl Physiol; 2012 Jun; 112(6):2065-72. PubMed ID: 21947452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skeletal muscle blood flow responses to hypoperfusion at rest and during rhythmic exercise in humans.
    Casey DP; Joyner MJ
    J Appl Physiol (1985); 2009 Aug; 107(2):429-37. PubMed ID: 19520838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aging is associated with altered vasodilator kinetics in dynamically contracting muscle: role of nitric oxide.
    Casey DP; Ranadive SM; Joyner MJ
    J Appl Physiol (1985); 2015 Aug; 119(3):232-41. PubMed ID: 26023230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adenosine receptor antagonist and augmented vasodilation during hypoxic exercise.
    Casey DP; Madery BD; Pike TL; Eisenach JH; Dietz NM; Joyner MJ; Wilkins BW
    J Appl Physiol (1985); 2009 Oct; 107(4):1128-37. PubMed ID: 19661449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contracting human skeletal muscle maintains the ability to blunt α1 -adrenergic vasoconstriction during KIR channel and Na(+) /K(+) -ATPase inhibition.
    Crecelius AR; Kirby BS; Hearon CM; Luckasen GJ; Larson DG; Dinenno FA
    J Physiol; 2015 Jun; 593(12):2735-51. PubMed ID: 25893955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of nitric oxide in the contraction-induced rapid vasodilation in young and older adults.
    Casey DP; Walker BG; Ranadive SM; Taylor JL; Joyner MJ
    J Appl Physiol (1985); 2013 Aug; 115(4):446-55. PubMed ID: 23788575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions of acetylcholine and nitric oxide to forearm blood flow at exercise onset and recovery.
    Shoemaker JK; Halliwill JR; Hughson RL; Joyner MJ
    Am J Physiol; 1997 Nov; 273(5):H2388-95. PubMed ID: 9374776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bimodal distribution of vasodilator responsiveness to adenosine due to difference in nitric oxide contribution: implications for exercise hyperemia.
    Martin EA; Nicholson WT; Eisenach JH; Charkoudian N; Joyner MJ
    J Appl Physiol (1985); 2006 Aug; 101(2):492-9. PubMed ID: 16614358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of acetylcholine and nitric oxide on forearm blood flow at rest and after a single muscle contraction.
    Brock RW; Tschakovsky ME; Shoemaker JK; Halliwill JR; Joyner MJ; Hughson RL
    J Appl Physiol (1985); 1998 Dec; 85(6):2249-54. PubMed ID: 9843549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelium-derived hyperpolarizing factor contributes to hypoxia-induced skeletal muscle vasodilation in humans.
    Spilk S; Herr MD; Sinoway LI; Leuenberger UA
    Am J Physiol Heart Circ Physiol; 2013 Dec; 305(11):H1639-45. PubMed ID: 24043253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide, but not vasodilating prostaglandins, contributes to the improvement of exercise hyperemia via ascorbic acid in healthy older adults.
    Crecelius AR; Kirby BS; Voyles WF; Dinenno FA
    Am J Physiol Heart Circ Physiol; 2010 Nov; 299(5):H1633-41. PubMed ID: 20817831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of nitric oxide in exercise-induced vasodilation of the forearm.
    Endo T; Imaizumi T; Tagawa T; Shiramoto M; Ando S; Takeshita A
    Circulation; 1994 Dec; 90(6):2886-90. PubMed ID: 7994834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Augmented skeletal muscle hyperaemia during hypoxic exercise in humans is blunted by combined inhibition of nitric oxide and vasodilating prostaglandins.
    Crecelius AR; Kirby BS; Voyles WF; Dinenno FA
    J Physiol; 2011 Jul; 589(Pt 14):3671-83. PubMed ID: 21624968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.