These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 21292940)

  • 1. Suppression of collisional shifts in a strongly interacting lattice clock.
    Swallows MD; Bishof M; Lin Y; Blatt S; Martin MJ; Rey AM; Ye J
    Science; 2011 Feb; 331(6020):1043-6. PubMed ID: 21292940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precision measurement of fermionic collisions using an 87Sr optical lattice clock with 1 x 10(-16) inaccuracy.
    Swallows MD; Campbell GK; Ludlow AD; Boyd MM; Thomsen JW; Martin MJ; Blatt S; Nicholson TL; Ye J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):574-82. PubMed ID: 20211772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Operating a (87)Sr optical lattice clock with high precision and at high density.
    Swallows M; Martin M; Bishof M; Benko C; Lin Y; Blatt S; Rey AM; Ye J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):416-25. PubMed ID: 22481774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sr lattice clock at 1 x 10(-16) fractional uncertainty by remote optical evaluation with a Ca clock.
    Ludlow AD; Zelevinsky T; Campbell GK; Blatt S; Boyd MM; de Miranda MH; Martin MJ; Thomsen JW; Foreman SM; Ye J; Fortier TM; Stalnaker JE; Diddams SA; Le Coq Y; Barber ZW; Poli N; Lemke ND; Beck KM; Oates CW
    Science; 2008 Mar; 319(5871):1805-8. PubMed ID: 18276849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing interactions between ultracold fermions.
    Campbell GK; Boyd MM; Thomsen JW; Martin MJ; Blatt S; Swallows MD; Nicholson TL; Fortier T; Oates CW; Diddams SA; Lemke ND; Naidon P; Julienne P; Ye J; Ludlow AD
    Science; 2009 Apr; 324(5925):360-3. PubMed ID: 19372424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An optical lattice clock.
    Takamoto M; Hong FL; Higashi R; Katori H
    Nature; 2005 May; 435(7040):321-4. PubMed ID: 15902252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spin waves and collisional frequency shifts of a trapped-atom clock.
    Maineult W; Deutsch C; Gibble K; Reichel J; Rosenbusch P
    Phys Rev Lett; 2012 Jul; 109(2):020407. PubMed ID: 23030137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Fermi-degenerate three-dimensional optical lattice clock.
    Campbell SL; Hutson RB; Marti GE; Goban A; Darkwah Oppong N; McNally RL; Sonderhouse L; Robinson JM; Zhang W; Bloom BJ; Ye J
    Science; 2017 Oct; 358(6359):90-94. PubMed ID: 28983047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. p-Wave cold collisions in an optical lattice clock.
    Lemke ND; von Stecher J; Sherman JA; Rey AM; Oates CW; Ludlow AD
    Phys Rev Lett; 2011 Sep; 107(10):103902. PubMed ID: 21981504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collisional losses, decoherence, and frequency shifts in optical lattice clocks with bosons.
    Lisdat Ch; Winfred JS; Middelmann T; Riehle F; Sterr U
    Phys Rev Lett; 2009 Aug; 103(9):090801. PubMed ID: 19792777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Mott insulator of fermionic atoms in an optical lattice.
    Jördens R; Strohmaier N; Günter K; Moritz H; Esslinger T
    Nature; 2008 Sep; 455(7210):204-7. PubMed ID: 18784720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clock with 8×10^{-19} Systematic Uncertainty.
    Aeppli A; Kim K; Warfield W; Safronova MS; Ye J
    Phys Rev Lett; 2024 Jul; 133(2):023401. PubMed ID: 39073965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of two independent Sr optical clocks with 1×10(-17) stability at 10(3) s.
    Nicholson TL; Martin MJ; Williams JR; Bloom BJ; Bishof M; Swallows MD; Campbell SL; Ye J
    Phys Rev Lett; 2012 Dec; 109(23):230801. PubMed ID: 23368177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantum scattering interferometer.
    Hart RA; Xu X; Legere R; Gibble K
    Nature; 2007 Apr; 446(7138):892-5. PubMed ID: 17443182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radio-frequency spectroscopy of ultracold fermions.
    Gupta S; Hadzibabic Z; Zwierlein MW; Stan CA; Dieckmann K; Schunck CH; Van Kempen EG; Verhaar BJ; Ketterle W
    Science; 2003 Jun; 300(5626):1723-6. PubMed ID: 12738872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resolved atomic interaction sidebands in an optical clock transition.
    Bishof M; Lin Y; Swallows MD; Gorshkov AV; Ye J; Rey AM
    Phys Rev Lett; 2011 Jun; 106(25):250801. PubMed ID: 21770623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A superradiant clock laser on a magic wavelength optical lattice.
    Maier T; Kraemer S; Ostermann L; Ritsch H
    Opt Express; 2014 Jun; 22(11):13269-79. PubMed ID: 24921521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. s-Wave collisional frequency shift of a fermion clock.
    Hazlett EL; Zhang Y; Stites RW; Gibble K; O'Hara KM
    Phys Rev Lett; 2013 Apr; 110(16):160801. PubMed ID: 23679589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emergence of multi-body interactions in a fermionic lattice clock.
    Goban A; Hutson RB; Marti GE; Campbell SL; Perlin MA; Julienne PS; D'Incao JP; Rey AM; Ye J
    Nature; 2018 Nov; 563(7731):369-373. PubMed ID: 30429544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An optical lattice clock with accuracy and stability at the 10(-18) level.
    Bloom BJ; Nicholson TL; Williams JR; Campbell SL; Bishof M; Zhang X; Zhang W; Bromley SL; Ye J
    Nature; 2014 Feb; 506(7486):71-5. PubMed ID: 24463513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.