These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 21294007)

  • 1. IMU-based ambulatory walking speed estimation in constrained treadmill and overground walking.
    Yang S; Li Q
    Comput Methods Biomech Biomed Engin; 2012; 15(3):313-22. PubMed ID: 21294007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Walking speed estimation using a shank-mounted inertial measurement unit.
    Li Q; Young M; Naing V; Donelan JM
    J Biomech; 2010 May; 43(8):1640-3. PubMed ID: 20185136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ambulatory running speed estimation using an inertial sensor.
    Yang S; Mohr C; Li Q
    Gait Posture; 2011 Oct; 34(4):462-6. PubMed ID: 21807521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of walking features from foot inertial sensing.
    Sabatini AM; Martelloni C; Scapellato S; Cavallo F
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):486-94. PubMed ID: 15759579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of stride length in level walking using an inertial measurement unit attached to the foot: a validation of the zero velocity assumption during stance.
    Peruzzi A; Della Croce U; Cereatti A
    J Biomech; 2011 Jul; 44(10):1991-4. PubMed ID: 21601860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ambulatory estimation of foot placement during walking using inertial sensors.
    Martin Schepers H; van Asseldonk EH; Baten CT; Veltink PH
    J Biomech; 2010 Dec; 43(16):3138-43. PubMed ID: 20723901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical mechanism for transitions in phase and frequency of arm and leg swing during walking.
    Kubo M; Wagenaar RC; Saltzman E; Holt KG
    Biol Cybern; 2004 Aug; 91(2):91-8. PubMed ID: 15351887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treadmill walking and overground walking of human subjects compared by recording sole-floor reaction force.
    Warabi T; Kato M; Kiriyama K; Yoshida T; Kobayashi N
    Neurosci Res; 2005 Nov; 53(3):343-8. PubMed ID: 16182398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An accelerometry-based comparison of 2 robotic assistive devices for treadmill training of gait.
    Regnaux JP; Saremi K; Marehbian J; Bussel B; Dobkin BH
    Neurorehabil Neural Repair; 2008; 22(4):348-54. PubMed ID: 18073325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Test-retest reliability of the IDEEA system in the quantification of step parameters during walking and stair climbing.
    Gorelick ML; Bizzini M; Maffiuletti NA; Munzinger JP; Munzinger U
    Clin Physiol Funct Imaging; 2009 Jul; 29(4):271-6. PubMed ID: 19302230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The consistency of maximum running speed measurements in humans using a feedback-controlled treadmill, and a comparison with maximum attainable speed during overground locomotion.
    Bowtell MV; Tan H; Wilson AM
    J Biomech; 2009 Nov; 42(15):2569-74. PubMed ID: 19683240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematic, kinetic and metabolic parameters of treadmill versus overground walking in healthy older adults.
    Parvataneni K; Ploeg L; Olney SJ; Brouwer B
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):95-100. PubMed ID: 18976839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bilateral step length estimation using a single inertial measurement unit attached to the pelvis.
    Köse A; Cereatti A; Della Croce U
    J Neuroeng Rehabil; 2012 Feb; 9():9. PubMed ID: 22316235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison analysis of hindlimb kinematics during overground and treadmill locomotion in rats.
    Pereira JE; Cabrita AM; Filipe VM; Bulas-Cruz J; Couto PA; Melo-Pinto P; Costa LM; Geuna S; Maurício AC; Varejão AS
    Behav Brain Res; 2006 Sep; 172(2):212-8. PubMed ID: 16777243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of traversed distance in level walking using a single inertial measurement unit attached to the waist.
    Kose A; Cereatti A; Della Croce U
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1125-8. PubMed ID: 22254512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Reliability of the novel gait analysis system RehaWatch].
    Schwesig R; Kauert R; Wust S; Becker S; Leuchte S
    Biomed Tech (Berl); 2010 Apr; 55(2):109-15. PubMed ID: 20367327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inertial sensors in estimating walking speed and inclination: an evaluation of sensor error models.
    Yang S; Laudanski A; Li Q
    Med Biol Eng Comput; 2012 Apr; 50(4):383-93. PubMed ID: 22418894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why not walk faster?
    Usherwood JR
    Biol Lett; 2005 Sep; 1(3):338-41. PubMed ID: 17148201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of pelvic complex kinematics during treadmill and overground walking.
    Chockalingam N; Chatterley F; Healy AC; Greenhalgh A; Branthwaite HR
    Arch Phys Med Rehabil; 2012 Dec; 93(12):2302-8. PubMed ID: 22365476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of gait biomechanics and metabolic requirements of overground and treadmill walking in people with stroke.
    Brouwer B; Parvataneni K; Olney SJ
    Clin Biomech (Bristol, Avon); 2009 Nov; 24(9):729-34. PubMed ID: 19664866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.