These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 21294133)
1. An analytical approach to the effect of finite-sized end reservoirs on electroosmotic transport through narrow confinements. Pal D; Chakraborty S Electrophoresis; 2011 Feb; 32(5):638-45. PubMed ID: 21294133 [TBL] [Abstract][Full Text] [Related]
2. Role of streaming potential on pulsating mass flow rate control in combined electroosmotic and pressure-driven microfluidic devices. Chakraborty J; Ray S; Chakraborty S Electrophoresis; 2012 Feb; 33(3):419-25. PubMed ID: 22212910 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects. Yan D; Yang C; Miao J; Lam Y; Huang X Electrophoresis; 2009 Sep; 30(18):3144-52. PubMed ID: 19764063 [TBL] [Abstract][Full Text] [Related]
4. Effect of nonuniform surface potential on electroosmotic flow at large applied electric field strength. Chen L; Conlisk AT Biomed Microdevices; 2009 Feb; 11(1):251-8. PubMed ID: 18850273 [TBL] [Abstract][Full Text] [Related]
5. Finite reservoir effect on capillary flow of microbead suspension in rectangular microchannels. Waghmare PR; Mitra SK J Colloid Interface Sci; 2010 Nov; 351(2):561-9. PubMed ID: 20813377 [TBL] [Abstract][Full Text] [Related]
6. A simple mechanism for reliable particle sorting in a microdevice with combined electroosmotic and pressure-driven flow. Johann R; Renaud P Electrophoresis; 2004 Nov; 25(21-22):3720-9. PubMed ID: 15565695 [TBL] [Abstract][Full Text] [Related]
7. Effect of conductivity variations within the electric double layer on the streaming potential estimation in narrow fluidic confinements. Das S; Chakraborty S Langmuir; 2010 Jul; 26(13):11589-96. PubMed ID: 20476752 [TBL] [Abstract][Full Text] [Related]
8. Manipulating particles in microfluidics by floating electrodes. Yalcin SE; Sharma A; Qian S; Joo SW; Baysal O Electrophoresis; 2010 Nov; 31(22):3711-8. PubMed ID: 20945412 [TBL] [Abstract][Full Text] [Related]
9. Steric effect and slip-modulated energy transfer in narrow fluidic channels with finite aspect ratios. Garai A; Chakraborty S Electrophoresis; 2010 Mar; 31(5):843-9. PubMed ID: 20191546 [TBL] [Abstract][Full Text] [Related]
10. Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis. Sridharan S; Zhu J; Hu G; Xuan X Electrophoresis; 2011 Sep; 32(17):2274-81. PubMed ID: 21792988 [TBL] [Abstract][Full Text] [Related]
11. Patterned-wettability-induced alteration of electro-osmosis over charge-modulated surfaces in narrow confinements. Ghosh U; Chakraborty S Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046304. PubMed ID: 22680571 [TBL] [Abstract][Full Text] [Related]
12. A microfluidic device for performing pressure-driven separations. Dutta D; Ramsey JM Lab Chip; 2011 Sep; 11(18):3081-8. PubMed ID: 21789335 [TBL] [Abstract][Full Text] [Related]
13. Numerical studies of continuous nutrient delivery for tumour spheroid culture in a microchannel by electrokinetically-induced pressure-driven flow. Movahed S; Li D Biomed Microdevices; 2010 Dec; 12(6):1061-72. PubMed ID: 20689992 [TBL] [Abstract][Full Text] [Related]
14. AC field induced-charge electroosmosis over leaky dielectric blocks embedded in a microchannel. Zhao C; Yang C Electrophoresis; 2011 Feb; 32(5):629-37. PubMed ID: 21290390 [TBL] [Abstract][Full Text] [Related]
15. Continuous particle separation based on electrical properties using alternating current dielectrophoresis. Cetin B; Li D Electrophoresis; 2009 Sep; 30(18):3124-33. PubMed ID: 19764062 [TBL] [Abstract][Full Text] [Related]
16. Quantification of electrical field-induced flow reversal in a microchannel. Pirat C; Naso A; van der Wouden EJ; Gardeniers JG; Lohse D; van den Berg A Lab Chip; 2008 Jun; 8(6):945-9. PubMed ID: 18497916 [TBL] [Abstract][Full Text] [Related]
17. Electrokinetic particle translocation through a nanopore containing a floating electrode. Zhang M; Ai Y; Sharma A; Joo SW; Kim DS; Qian S Electrophoresis; 2011 Jul; 32(14):1864-74. PubMed ID: 21710551 [TBL] [Abstract][Full Text] [Related]
18. Numeric simulation of heat transfer and electrokinetic flow in an electroosmosis-based continuous flow PCR chip. Gui L; Ren CL Anal Chem; 2006 Sep; 78(17):6215-22. PubMed ID: 16944904 [TBL] [Abstract][Full Text] [Related]
19. Bi-directional flow induced by an AC electroosmotic micropump with DC voltage bias. Islam N; Reyna J Electrophoresis; 2012 Apr; 33(7):1191-7. PubMed ID: 22539322 [TBL] [Abstract][Full Text] [Related]
20. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects. Jellema LC; Mey T; Koster S; Verpoorte E Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]