These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 21294133)
21. Estimation of zeta potential of electroosmotic flow in a microchannel using a reduced-order model. Park HM; Hong SM; Lee JS Biomed Microdevices; 2007 Oct; 9(5):751-60. PubMed ID: 17530411 [TBL] [Abstract][Full Text] [Related]
22. Numerical modeling of the Joule heating effect on electrokinetic flow focusing. Huang KD; Yang RJ Electrophoresis; 2006 May; 27(10):1957-66. PubMed ID: 16619299 [TBL] [Abstract][Full Text] [Related]
23. Simulation of two-dimensional fully developed laminar flow for a magneto-hydrodynamic (MHD) pump. Wang PJ; Chang CY; Chang ML Biosens Bioelectron; 2004 Jul; 20(1):115-21. PubMed ID: 15142583 [TBL] [Abstract][Full Text] [Related]
24. Model based design of a microfluidic mixer driven by induced charge electroosmosis. Harnett CK; Templeton J; Dunphy-Guzman KA; Senousy YM; Kanouff MP Lab Chip; 2008 Apr; 8(4):565-72. PubMed ID: 18369511 [TBL] [Abstract][Full Text] [Related]
25. Design, modeling and characterization of microfluidic architectures for high flow rate, small footprint microfluidic systems. Saias L; Autebert J; Malaquin L; Viovy JL Lab Chip; 2011 Mar; 11(5):822-32. PubMed ID: 21240403 [TBL] [Abstract][Full Text] [Related]
26. Joule heating induced transient temperature field and its effects on electroosmosis in a microcapillary packed with microspheres. Kang Y; Yang C; Huang X Langmuir; 2005 Aug; 21(16):7598-607. PubMed ID: 16042499 [TBL] [Abstract][Full Text] [Related]
27. Negative dielectrophoresis-based particle separation by size in a serpentine microchannel. Church C; Zhu J; Xuan X Electrophoresis; 2011 Feb; 32(5):527-31. PubMed ID: 21290386 [TBL] [Abstract][Full Text] [Related]
28. Effect of wall-molecule interactions on electrokinetic transport of charged molecules in nanofluidic channels during FET flow control. Oh YJ; Garcia AL; Petsev DN; Lopez GP; Brueck SR; Ivory CF; Han SM Lab Chip; 2009 Jun; 9(11):1601-8. PubMed ID: 19458869 [TBL] [Abstract][Full Text] [Related]
29. Electroosmotic shear flow in microchannels. Mampallil D; van den Ende D J Colloid Interface Sci; 2013 Jan; 390(1):234-41. PubMed ID: 23089595 [TBL] [Abstract][Full Text] [Related]
30. Nonlinear Smoluchowski velocity for electroosmosis of Power-law fluids over a surface with arbitrary zeta potentials. Zhao C; Yang C Electrophoresis; 2010 Mar; 31(5):973-9. PubMed ID: 20191559 [TBL] [Abstract][Full Text] [Related]
31. Recursive estimation of transient inhomogeneous zeta potential in microchannel turns using velocity measurements. Park HM; Kim TW Biomed Microdevices; 2009 Feb; 11(1):231-41. PubMed ID: 18807196 [TBL] [Abstract][Full Text] [Related]
32. Recent advances in direct current electrokinetic manipulation of particles for microfluidic applications. Xuan X Electrophoresis; 2019 Sep; 40(18-19):2484-2513. PubMed ID: 30816561 [TBL] [Abstract][Full Text] [Related]
33. Electrokinetic pumping effects of charged porous media in microchannels using the lattice Poisson-Boltzmann method. Wang M; Wang J; Chen S; Pan N J Colloid Interface Sci; 2006 Dec; 304(1):246-53. PubMed ID: 16989843 [TBL] [Abstract][Full Text] [Related]
34. Analytical investigations on the effects of substrate kinetics on macromolecular transport and hybridization through microfluidic channels. Das S; Subramanian K; Chakraborty S Colloids Surf B Biointerfaces; 2007 Aug; 58(2):203-17. PubMed ID: 17481862 [TBL] [Abstract][Full Text] [Related]
35. Model and verification of electrokinetic flow and transport in a micro-electrophoresis device. Barz DP; Ehrhard P Lab Chip; 2005 Sep; 5(9):949-58. PubMed ID: 16100579 [TBL] [Abstract][Full Text] [Related]
36. Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel. Marcos ; Yang C; Ooi KT; Wong TN; Masliyah JH J Colloid Interface Sci; 2004 Jul; 275(2):679-98. PubMed ID: 15178303 [TBL] [Abstract][Full Text] [Related]
37. Analytical and numerical study of Joule heating effects on electrokinetically pumped continuous flow PCR chips. Gui L; Ren CL Langmuir; 2008 Mar; 24(6):2938-46. PubMed ID: 18257592 [TBL] [Abstract][Full Text] [Related]
38. Development of a microfluidics-based gel protein recovery system. Razunguzwa TT; Biddle A; Anderson H; Zhan D; Powell M Electrophoresis; 2009 Dec; 30(23):4020-8. PubMed ID: 19960466 [TBL] [Abstract][Full Text] [Related]
39. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes. Chao K; Chen B; Wu J Biomed Microdevices; 2010 Dec; 12(6):959-66. PubMed ID: 20668948 [TBL] [Abstract][Full Text] [Related]
40. Characterization of particle capture in a sawtooth patterned insulating electrokinetic microfluidic device. Staton SJ; Chen KP; Taylor TJ; Pacheco JR; Hayes MA Electrophoresis; 2010 Nov; 31(22):3634-41. PubMed ID: 21077235 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]