These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 21294505)

  • 61. Highly Reliable Superhydrophobic Surface with Carbon Nanotubes Immobilized on a PDMS/Adhesive Multilayer.
    Jung KK; Jung Y; Choi CJ; Ko JS
    ACS Omega; 2018 Oct; 3(10):12956-12966. PubMed ID: 31458019
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Double-scale roughness and superhydrophobicity on metalized Toray carbon fiber paper.
    Bliznakov S; Liu Y; Dimitrov N; Garnica J; Sedev R
    Langmuir; 2009 Apr; 25(8):4760-6. PubMed ID: 19265409
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Constructing a superhydrophobic surface on polydimethylsiloxane via spin coating and vapor-liquid sol-gel process.
    Peng YT; Lo KF; Juang YJ
    Langmuir; 2010 Apr; 26(7):5167-71. PubMed ID: 20020726
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Investigating the interface of superhydrophobic surfaces in contact with water.
    Doshi DA; Shah PB; Singh S; Branson ED; Malanoski AP; Watkins EB; Majewski J; van Swol F; Brinker CJ
    Langmuir; 2005 Aug; 21(17):7805-11. PubMed ID: 16089386
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Surface morphology control of polymer films by electron irradiation and its application to superhydrophobic surfaces.
    Lee EJ; Jung CH; Hwang IT; Choi JH; Cho SO; Nho YC
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):2988-93. PubMed ID: 21776956
    [TBL] [Abstract][Full Text] [Related]  

  • 66. An effect of silicon micro-nano-patterning arrays on superhydrophobic surface.
    Atthi N; Nimittrakoolchai OU; Supothina S; Supadech J; Jeamsaksiri W; Pankiew A; Hruanun C; Poyai A
    J Nanosci Nanotechnol; 2011 Oct; 11(10):8967-73. PubMed ID: 22400288
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A rapid one-step fabrication of patternable superhydrophobic surfaces driven by Marangoni instability.
    Kang SM; Hwang S; Jin SH; Choi CH; Kim J; Park BJ; Lee D; Lee CS
    Langmuir; 2014 Mar; 30(10):2828-34. PubMed ID: 24564739
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Adsorption and aqueous lubricating properties of charged and neutral amphiphilic diblock copolymers at a compliant, hydrophobic interface.
    Røn T; Javakhishvili I; Jankova K; Hvilsted S; Lee S
    Langmuir; 2013 Jun; 29(25):7782-92. PubMed ID: 23725290
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Water-based layer-by-layer surface chemical modification of biomimetic materials: oil repellency.
    Ghosh N; Singh AV; Vaidya AA
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):8869-74. PubMed ID: 23942547
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Superhydrophobic Surface with Stepwise Multilayered Micro- and Nanostructure and an Investigation of Its Corrosion Resistance.
    Tong W; Karthik N; Li J; Wang N; Xiong D
    Langmuir; 2019 Nov; 35(47):15078-15085. PubMed ID: 31682454
    [TBL] [Abstract][Full Text] [Related]  

  • 71. On the possibility of superhydrophobic behavior for hydrophilic materials.
    Cui XS; Li W
    J Colloid Interface Sci; 2010 Jul; 347(1):156-62. PubMed ID: 20417521
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Glucose permeable poly (dimethyl siloxane) poly (N-isopropyl acrylamide) interpenetrating networks as ophthalmic biomaterials.
    Liu L; Sheardown H
    Biomaterials; 2005 Jan; 26(3):233-44. PubMed ID: 15262466
    [TBL] [Abstract][Full Text] [Related]  

  • 73. New insight into icing and de-icing properties of hydrophobic and hydrophilic structured surfaces based on core-shell particles.
    Chanda J; Ionov L; Kirillova A; Synytska A
    Soft Matter; 2015 Dec; 11(47):9126-34. PubMed ID: 26411650
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Evidence of the synergetic role of charged species and atomic oxygen in the molecular etching of PTFE surfaces for hydrophobic surface synthesis.
    Vandencasteele N; Broze B; Collette S; De Vos C; Viville P; Lazzaroni R; Reniers F
    Langmuir; 2010 Nov; 26(21):16503-9. PubMed ID: 20973585
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Micro-fabricated polydimethyl siloxane (PDMS) surfaces regulate the development of marine microbial biofilm communities.
    Ling GC; Low MH; Erken M; Longford S; Nielsen S; Poole AJ; Steinberg P; McDougald D; Kjelleberg S
    Biofouling; 2014; 30(3):323-35. PubMed ID: 24558964
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A new water absorbable mechanical Epidermal skin equivalent: the combination of hydrophobic PDMS and hydrophilic PVA hydrogel.
    Morales-Hurtado M; Zeng X; Gonzalez-Rodriguez P; Ten Elshof JE; van der Heide E
    J Mech Behav Biomed Mater; 2015 Jun; 46():305-17. PubMed ID: 25840121
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A combined etching process toward robust superhydrophobic SiC surfaces.
    Liu Y; Lin W; Lin Z; Xiu Y; Wong CP
    Nanotechnology; 2012 Jun; 23(25):255703. PubMed ID: 22652604
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Poly(dimethylsiloxane)-poly(ethylene oxide)-heparin block copolymers. III: Surface and bulk compositional differences.
    Grainger DW; Okano T; Kim SW; Castner DG; Ratner BD; Briggs D; Sung YK
    J Biomed Mater Res; 1990 May; 24(5):547-71. PubMed ID: 2324126
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Surface hydrophobic co-modification of hollow silica nanoparticles toward large-area transparent superhydrophobic coatings.
    Gao L; He J
    J Colloid Interface Sci; 2013 Apr; 396():152-9. PubMed ID: 23433522
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Fabrication of polyethylene surface with stable superhydrophobicity by nanoparticle assisted thermal micromolding process.
    Feng J; Zhong M; Lin W
    J Nanosci Nanotechnol; 2012 Mar; 12(3):2679-84. PubMed ID: 22755108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.