BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 21294539)

  • 1. Introducing RGD peptides on PHBV films through PEG-containing cross-linkers to improve the biocompatibility.
    Wang YY; Lü LX; Shi JC; Wang HF; Xiao ZD; Huang NP
    Biomacromolecules; 2011 Mar; 12(3):551-9. PubMed ID: 21294539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface engineering of PHBV by covalent collagen immobilization to improve cell compatibility.
    Wang Y; Ke Y; Ren L; Wu G; Chen X; Zhao Q
    J Biomed Mater Res A; 2009 Mar; 88(3):616-27. PubMed ID: 18314894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Bio-modification of polyhydroxyalkanoates and its biocompatibility with chondrocytes].
    Gao T; Chang H; Fan M; Lu X; Wang Z; Zhang X; Jing X; Shi Y; Li Z
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Aug; 28(8):1023-9. PubMed ID: 25417320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of amide-amine bifunctionalized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films to improve chondrocyte adhesion.
    Wang Y; Ke Y; Wang L; Zhao Q
    J Biomater Sci Polym Ed; 2009; 20(5-6):673-87. PubMed ID: 19323883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving hydrophilicity, mechanical properties and biocompatibility of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] through blending with poly[(R)-3-hydroxybutyrate]-alt-poly(ethylene oxide).
    Li X; Liu KL; Wang M; Wong SY; Tjiu WC; He CB; Goh SH; Li J
    Acta Biomater; 2009 Jul; 5(6):2002-12. PubMed ID: 19251499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RGD-grafted poly-L-lysine-graft-(polyethylene glycol) copolymers block non-specific protein adsorption while promoting cell adhesion.
    VandeVondele S; Vörös J; Hubbell JA
    Biotechnol Bioeng; 2003 Jun; 82(7):784-90. PubMed ID: 12701144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular compatibility of RGD-modified chitosan nanofibers with aligned or random orientation.
    Wang YY; Lü LX; Feng ZQ; Xiao ZD; Huang NP
    Biomed Mater; 2010 Oct; 5(5):054112. PubMed ID: 20876956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers for skin tissue engineering: effects of topography, mechanical, and chemical stimuli.
    Kuppan P; Vasanthan KS; Sundaramurthi D; Krishnan UM; Sethuraman S
    Biomacromolecules; 2011 Sep; 12(9):3156-65. PubMed ID: 21800891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introducing amine functionalities on a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) surface: comparing the use of ammonia plasma treatment and ethylenediamine aminolysis.
    Keen I; Broota P; Rintoul L; Fredericks P; Trau M; Grøndahl L
    Biomacromolecules; 2006 Feb; 7(2):427-34. PubMed ID: 16471912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Surface modification of vascular tissue engineering biomaterial by low temperature plasma with NH3, CO2 and O2].
    Lu G; Zhang J; Li JX; Gu YQ; Jiang M; Chen L; Sun HC
    Zhonghua Yi Xue Za Zhi; 2007 Dec; 87(47):3362-6. PubMed ID: 18478953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of proteins at physiological concentrations on pegylated surfaces and the compatibilizing role of adsorbed albumin with respect to other proteins according to optical waveguide lightmode spectroscopy (OWLS).
    Leclercq L; Modena E; Vert M
    J Biomater Sci Polym Ed; 2013; 24(13):1499-518. PubMed ID: 23848445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A library of multifunctional polyesters with "peptide-like" pendant functional groups.
    Gokhale S; Xu Y; Joy A
    Biomacromolecules; 2013 Aug; 14(8):2489-93. PubMed ID: 23789897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(ethylene glycol)-grafted poly(3-hydroxyundecenoate) networks for enhanced blood compatibility.
    Chung CW; Kim HW; Kim YB; Rhee YH
    Int J Biol Macromol; 2003 Mar; 32(1-2):17-22. PubMed ID: 12719127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) supports in vitro osteogenesis.
    Kumarasuriyar A; Jackson RA; Grøndahl L; Trau M; Nurcombe V; Cool SM
    Tissue Eng; 2005; 11(7-8):1281-95. PubMed ID: 16144464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The improvement of fibroblast growth on hydrophobic biopolyesters by coating with polyhydroxyalkanoate granule binding protein PhaP fused with cell adhesion motif RGD.
    Dong Y; Li P; Chen CB; Wang ZH; Ma P; Chen GQ
    Biomaterials; 2010 Dec; 31(34):8921-30. PubMed ID: 20728212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface grafting of poly(ethylene glycol) onto poly(acrylamide-co-vinyl amine) cross-linked films under mild conditions.
    Yamamoto Y; Sefton MV
    J Biomater Sci Polym Ed; 1998; 9(5):427-37. PubMed ID: 9648025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioactive surface modification on amide-photografted poly(3-hydroxybutyrate-co-3-hydroxyvalerate).
    Ke Y; Wang YJ; Ren L; Wu G; Xue W
    Biomed Mater; 2011 Apr; 6(2):025007. PubMed ID: 21358029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PEG- and peptide-grafted aliphatic polyesters by click chemistry.
    Parrish B; Breitenkamp RB; Emrick T
    J Am Chem Soc; 2005 May; 127(20):7404-10. PubMed ID: 15898789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High salt stability and protein resistance of poly(L-lysine)-g-poly(ethylene glycol) copolymers covalently immobilized via aldehyde plasma polymer interlayers on inorganic and polymeric substrates.
    Blättler TM; Pasche S; Textor M; Griesser HJ
    Langmuir; 2006 Jun; 22(13):5760-9. PubMed ID: 16768506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material.
    Ito Y; Hasuda H; Kamitakahara M; Ohtsuki C; Tanihara M; Kang IK; Kwon OH
    J Biosci Bioeng; 2005 Jul; 100(1):43-9. PubMed ID: 16233849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.