BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 21294658)

  • 1. Oxidative stress and blood-brain barrier dysfunction under particular consideration of matrix metalloproteinases.
    Lehner C; Gehwolf R; Tempfer H; Krizbai I; Hennig B; Bauer HC; Bauer H
    Antioxid Redox Signal; 2011 Sep; 15(5):1305-23. PubMed ID: 21294658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of free radicals, matrix metalloproteinases and caveolin-1 impacts blood-brain barrier permeability.
    Gu Y; Dee CM; Shen J
    Front Biosci (Schol Ed); 2011 Jun; 3(4):1216-31. PubMed ID: 21622267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood-brain barrier dysfunction.
    Haorah J; Ramirez SH; Schall K; Smith D; Pandya R; Persidsky Y
    J Neurochem; 2007 Apr; 101(2):566-76. PubMed ID: 17250680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of ROS in BBB dysfunction.
    Pun PB; Lu J; Moochhala S
    Free Radic Res; 2009 Apr; 43(4):348-64. PubMed ID: 19241241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ammonia increases paracellular permeability of rat brain endothelial cells by a mechanism encompassing oxidative/nitrosative stress and activation of matrix metalloproteinases.
    Skowrońska M; Zielińska M; Wójcik-Stanaszek L; Ruszkiewicz J; Milatovic D; Aschner M; Albrecht J
    J Neurochem; 2012 Apr; 121(1):125-34. PubMed ID: 22260250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidant Mechanisms in Renal Injury and Disease.
    Ratliff BB; Abdulmahdi W; Pawar R; Wolin MS
    Antioxid Redox Signal; 2016 Jul; 25(3):119-46. PubMed ID: 26906267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of oxidative stress in hypoxia-induced blood-brain barrier breakdown.
    Al Ahmad A; Gassmann M; Ogunshola OO
    Microvasc Res; 2012 Sep; 84(2):222-5. PubMed ID: 22668821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of matrix metalloproteinases by cytokines and reactive oxygen/nitrogen species in the myocardium.
    Siwik DA; Colucci WS
    Heart Fail Rev; 2004 Jan; 9(1):43-51. PubMed ID: 14739767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alcohol-induced oxidative stress in brain endothelial cells causes blood-brain barrier dysfunction.
    Haorah J; Knipe B; Leibhart J; Ghorpade A; Persidsky Y
    J Leukoc Biol; 2005 Dec; 78(6):1223-32. PubMed ID: 16204625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress and protein aggregation during biological aging.
    Squier TC
    Exp Gerontol; 2001 Sep; 36(9):1539-50. PubMed ID: 11525876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of glutathione and glutathione peroxidase in regulating cellular level of reactive oxygen and nitrogen species.
    Panday S; Talreja R; Kavdia M
    Microvasc Res; 2020 Sep; 131():104010. PubMed ID: 32335268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of oxidative stress and neurovascular inflammation in the pathogenesis of traumatic brain injury.
    Abdul-Muneer PM; Chandra N; Haorah J
    Mol Neurobiol; 2015; 51(3):966-79. PubMed ID: 24865512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke.
    Yang C; Hawkins KE; Doré S; Candelario-Jalil E
    Am J Physiol Cell Physiol; 2019 Feb; 316(2):C135-C153. PubMed ID: 30379577
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Hu S; Wu Y; Zhao B; Hu H; Zhu B; Sun Z; Li P; Du S
    Molecules; 2018 Oct; 23(11):. PubMed ID: 30373188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative stress: Normal pregnancy versus preeclampsia.
    Chiarello DI; Abad C; Rojas D; Toledo F; Vázquez CM; Mate A; Sobrevia L; Marín R
    Biochim Biophys Acta Mol Basis Dis; 2020 Feb; 1866(2):165354. PubMed ID: 30590104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L-gamma-Glutamyl-L-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immunologic sensor(s)?
    Haddad JJ; Harb HL
    Mol Immunol; 2005 May; 42(9):987-1014. PubMed ID: 15829290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative depolymerization of polysaccharides by reactive oxygen/nitrogen species.
    Duan J; Kasper DL
    Glycobiology; 2011 Apr; 21(4):401-9. PubMed ID: 21030538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications.
    Moldogazieva NT; Mokhosoev IM; Feldman NB; Lutsenko SV
    Free Radic Res; 2018 May; 52(5):507-543. PubMed ID: 29589770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative stress, redox signaling, and autophagy: cell death versus survival.
    Navarro-Yepes J; Burns M; Anandhan A; Khalimonchuk O; del Razo LM; Quintanilla-Vega B; Pappa A; Panayiotidis MI; Franco R
    Antioxid Redox Signal; 2014 Jul; 21(1):66-85. PubMed ID: 24483238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free radicals and antioxidants in normal physiological functions and human disease.
    Valko M; Leibfritz D; Moncol J; Cronin MT; Mazur M; Telser J
    Int J Biochem Cell Biol; 2007; 39(1):44-84. PubMed ID: 16978905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.