BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 21294796)

  • 1. A recombineering-based gene tagging system for Arabidopsis.
    Zhou R; Benavente LM; Stepanova AN; Alonso JM
    Plant J; 2011 May; 66(4):712-23. PubMed ID: 21294796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BAC-recombineering for studying plant gene regulation: developmental control and cellular localization of SnRK1 kinase subunits.
    Bitrián M; Roodbarkelari F; Horváth M; Koncz C
    Plant J; 2011 Mar; 65(5):829-42. PubMed ID: 21235649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings.
    Marion J; Bach L; Bellec Y; Meyer C; Gissot L; Faure JD
    Plant J; 2008 Oct; 56(1):169-79. PubMed ID: 18643979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene modification by fast-track recombineering for cellular localization and isolation of components of plant protein complexes.
    Hu Z; Ghosh A; Stolze SC; Horváth M; Bai B; Schaefer S; Zündorf S; Liu S; Harzen A; Hajheidari M; Sarnowski TJ; Nakagami H; Koncz Z; Koncz C
    Plant J; 2019 Oct; 100(2):411-429. PubMed ID: 31276249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A recombineering-based gene tagging system for Arabidopsis.
    Alonso JM; Stepanova AN
    Methods Mol Biol; 2015; 1227():233-43. PubMed ID: 25239749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arabidopsis transformation with large bacterial artificial chromosomes.
    Alonso JM; Stepanova AN
    Methods Mol Biol; 2014; 1062():271-83. PubMed ID: 24057372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Improved Recombineering Toolset for Plants.
    Brumos J; Zhao C; Gong Y; Soriano D; Patel AP; Perez-Amador MA; Stepanova AN; Alonso JM
    Plant Cell; 2020 Jan; 32(1):100-122. PubMed ID: 31666295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods for generation and analysis of fluorescent protein-tagged maize lines.
    Mohanty A; Yang Y; Luo A; Sylvester AW; Jackson D
    Methods Mol Biol; 2009; 526():71-89. PubMed ID: 19378001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modified bacterial artificial chromosomes for zebrafish transgenesis.
    Yang Z; Jiang H; Chaichanasakul T; Gong S; Yang XW; Heintz N; Lin S
    Methods; 2006 Jul; 39(3):183-8. PubMed ID: 16828309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homologous recombination-mediated cloning and manipulation of genomic DNA regions using Gateway and recombineering systems.
    Rozwadowski K; Yang W; Kagale S
    BMC Biotechnol; 2008 Nov; 8():88. PubMed ID: 19014699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent transgenes to study interphase chromosomes in living plants.
    Matzke AJ; Huettel B; van der Winden J; Matzke M
    Methods Mol Biol; 2008; 463():241-65. PubMed ID: 18951172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial artificial chromosome transgenesis for zebrafish.
    Yang Z; Jiang H; Lin S
    Methods Mol Biol; 2009; 546():103-16. PubMed ID: 19378100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Recombineering and its application].
    Zhou JG; Hong X; Huang CF
    Yi Chuan Xue Bao; 2003 Oct; 30(10):983-8. PubMed ID: 14669518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple and highly efficient BAC recombineering using galK selection.
    Warming S; Costantino N; Court DL; Jenkins NA; Copeland NG
    Nucleic Acids Res; 2005 Feb; 33(4):e36. PubMed ID: 15731329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel approach for the construction of plant amiRNA expression vectors.
    Yan H; Deng X; Cao Y; Huang J; Ma L; Zhao B
    J Biotechnol; 2011 Jan; 151(1):9-14. PubMed ID: 21040750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of human artificial chromosome vectors by recombineering.
    Kotzamanis G; Cheung W; Abdulrazzak H; Perez-Luz S; Howe S; Cooke H; Huxley C
    Gene; 2005 May; 351():29-38. PubMed ID: 15837432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A recombineering pipeline for functional genomics applied to Caenorhabditis elegans.
    Sarov M; Schneider S; Pozniakovski A; Roguev A; Ernst S; Zhang Y; Hyman AA; Stewart AF
    Nat Methods; 2006 Oct; 3(10):839-44. PubMed ID: 16990816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recombineering BAC transgenes for protein tagging.
    Ciotta G; Hofemeister H; Maresca M; Fu J; Sarov M; Anastassiadis K; Stewart AF
    Methods; 2011 Feb; 53(2):113-9. PubMed ID: 20868752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput protein localization in Arabidopsis using Agrobacterium-mediated transient expression of GFP-ORF fusions.
    Koroleva OA; Tomlinson ML; Leader D; Shaw P; Doonan JH
    Plant J; 2005 Jan; 41(1):162-74. PubMed ID: 15610358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tandem repetitive transgenes and fluorescent chromatin tags alter local interphase chromosome arrangement in Arabidopsis thaliana.
    Pecinka A; Kato N; Meister A; Probst AV; Schubert I; Lam E
    J Cell Sci; 2005 Aug; 118(Pt 16):3751-8. PubMed ID: 16076901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.