BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 21294912)

  • 1. Modeling the evolution of a classic genetic switch.
    Josephides C; Moses AM
    BMC Syst Biol; 2011 Feb; 5():24. PubMed ID: 21294912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reverse Evolution of a Classic Gene Network in Yeast Offers a Competitive Advantage.
    Duan SF; Shi JY; Yin Q; Zhang RP; Han PJ; Wang QM; Bai FY
    Curr Biol; 2019 Apr; 29(7):1126-1136.e5. PubMed ID: 30905601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene duplication and the adaptive evolution of a classic genetic switch.
    Hittinger CT; Carroll SB
    Nature; 2007 Oct; 449(7163):677-81. PubMed ID: 17928853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary aspects of a genetic network: studying the lactose/galactose regulon of Kluyveromyces lactis.
    Anders A; Breunig KD
    Methods Mol Biol; 2011; 734():259-77. PubMed ID: 21468994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Network motif-based analysis of regulatory patterns in paralogous gene pairs.
    Melkus G; Rucevskis P; Celms E; Čerāns K; Freivalds K; Kikusts P; Lace L; Opmanis M; Rituma D; Viksna J
    J Bioinform Comput Biol; 2020 Jun; 18(3):2040008. PubMed ID: 32698721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gal3 Binds Gal80 Tighter than Gal1 Indicating Adaptive Protein Changes Following Duplication.
    Lavy T; Yanagida H; Tawfik DS
    Mol Biol Evol; 2016 Feb; 33(2):472-7. PubMed ID: 26516093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divergence of alternative sugar preferences through modulation of the expression and activity of the Gal3 sensor in yeast.
    Fita-Torró J; Swamy KBS; Pascual-Ahuir A; Proft M
    Mol Ecol; 2023 Jul; 32(13):3557-3574. PubMed ID: 37052375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the GAL3 signal transduction pathway activating GAL4 protein-dependent transcription in Saccharomyces cerevisiae.
    Bhat PJ; Oh D; Hopper JE
    Genetics; 1990 Jun; 125(2):281-91. PubMed ID: 2199310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid reorganization of the transcriptional regulatory network after genome duplication in yeast.
    Conant GC
    Proc Biol Sci; 2010 Mar; 277(1683):869-76. PubMed ID: 19923128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic galactokinase expression underlies GAL gene induction in a GAL3 mutant of Saccharomyces cerevisiae.
    Kar RK; Qureshi MT; DasAdhikari AK; Zahir T; Venkatesh KV; Bhat PJ
    FEBS J; 2014 Apr; 281(7):1798-817. PubMed ID: 24785355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic variation in the concentration of a repressor activates GAL genetic switch: implications in evolution of regulatory network.
    Bhat PJ; Venkatesh KV
    FEBS Lett; 2005 Jan; 579(3):597-603. PubMed ID: 15670814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perturbation of the interaction between Gal4p and Gal80p of the Saccharomyces cerevisiae GAL switch results in altered responses to galactose and glucose.
    Das Adhikari AK; Qureshi MT; Kar RK; Bhat PJ
    Mol Microbiol; 2014 Oct; 94(1):202-17. PubMed ID: 25135592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive genome duplication affects patterns of molecular evolution in Saccharomyces cerevisiae.
    Fisher KJ; Buskirk SW; Vignogna RC; Marad DA; Lang GI
    PLoS Genet; 2018 May; 14(5):e1007396. PubMed ID: 29799840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positive Feedback Genetic Circuit Incorporating a Constitutively Active Mutant Gal3 into Yeast GAL Induction System.
    Ryo S; Ishii J; Matsuno T; Nakamura Y; Matsubara D; Tominaga M; Kondo A
    ACS Synth Biol; 2017 Jun; 6(6):928-935. PubMed ID: 28324652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetics of the yeast galactose genetic switch.
    Bhat PJ; Iyer RS
    J Biosci; 2009 Oct; 34(4):513-22. PubMed ID: 19920337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The regulatory roles of the galactose permease and kinase in the induction response of the GAL network in Saccharomyces cerevisiae.
    Hawkins KM; Smolke CD
    J Biol Chem; 2006 May; 281(19):13485-13492. PubMed ID: 16524886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of gene regulatory networks: from network reconstruction to evolution.
    Thompson D; Regev A; Roy S
    Annu Rev Cell Dev Biol; 2015; 31():399-428. PubMed ID: 26355593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematical model of GAL regulon dynamics in Saccharomyces cerevisiae.
    Apostu R; Mackey MC
    J Theor Biol; 2012 Jan; 293():219-35. PubMed ID: 22024631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and steady-state analysis of the GAL regulatory system in Kluyveromyces lactis.
    Pannala VR; Bhartiya S; Venkatesh KV
    FEBS J; 2010 Jul; 277(14):2987-3002. PubMed ID: 20528923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel reorganization of protein function in the spindle checkpoint pathway through evolutionary paths in the fitness landscape that appear neutral in laboratory experiments.
    Nguyen Ba AN; Strome B; Osman S; Legere EA; Zarin T; Moses AM
    PLoS Genet; 2017 Apr; 13(4):e1006735. PubMed ID: 28410373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.