These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 21295559)

  • 1. Extracellular DC electric fields induce nonuniform membrane polarization in rat hippocampal CA1 pyramidal neurons.
    Akiyama H; Shimizu Y; Miyakawa H; Inoue M
    Brain Res; 2011 Apr; 1383():22-35. PubMed ID: 21295559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro.
    Bikson M; Inoue M; Akiyama H; Deans JK; Fox JE; Miyakawa H; Jefferys JG
    J Physiol; 2004 May; 557(Pt 1):175-90. PubMed ID: 14978199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SK (KCa2) channels do not control somatic excitability in CA1 pyramidal neurons but can be activated by dendritic excitatory synapses and regulate their impact.
    Gu N; Hu H; Vervaeke K; Storm JF
    J Neurophysiol; 2008 Nov; 100(5):2589-604. PubMed ID: 18684909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steep decrease in the specific membrane resistance in the apical dendrites of hippocampal CA1 pyramidal neurons.
    Omori T; Aonishi T; Miyakawa H; Inoue M; Okada M
    Neurosci Res; 2009 May; 64(1):83-95. PubMed ID: 19428686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inter-ictal- and ictal-like epileptic discharges in the dendritic tree of neocortical pyramidal neurons.
    Schiller Y
    J Neurophysiol; 2002 Dec; 88(6):2954-62. PubMed ID: 12466421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective shunting of the NMDA EPSP component by the slow afterhyperpolarization in rat CA1 pyramidal neurons.
    Fernández de Sevilla D; Fuenzalida M; Porto Pazos AB; Buño W
    J Neurophysiol; 2007 May; 97(5):3242-55. PubMed ID: 17329628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological characteristics and electrophysiological properties of CA1 pyramidal neurons in macaque monkeys.
    Altemus KL; Lavenex P; Ishizuka N; Amaral DG
    Neuroscience; 2005; 136(3):741-56. PubMed ID: 16344148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathway interactions and synaptic plasticity in the dendritic tuft regions of CA1 pyramidal neurons.
    Takahashi H; Magee JC
    Neuron; 2009 Apr; 62(1):102-11. PubMed ID: 19376070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of sustained field potentials by gradients of polarization within single neurons: a macroscopic model of spreading depression.
    Makarova J; Makarov VA; Herreras O
    J Neurophysiol; 2010 May; 103(5):2446-57. PubMed ID: 20220074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversed somatodendritic I(h) gradient in a class of rat hippocampal neurons with pyramidal morphology.
    Bullis JB; Jones TD; Poolos NP
    J Physiol; 2007 Mar; 579(Pt 2):431-43. PubMed ID: 17185334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial compartmentalization and functional impact of conductance in pyramidal neurons.
    Williams SR
    Nat Neurosci; 2004 Sep; 7(9):961-7. PubMed ID: 15322550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered synaptic dynamics and hippocampal excitability but normal long-term plasticity in mice lacking hyperpolarizing GABA A receptor-mediated inhibition in CA1 pyramidal neurons.
    Riekki R; Pavlov I; Tornberg J; Lauri SE; Airaksinen MS; Taira T
    J Neurophysiol; 2008 Jun; 99(6):3075-89. PubMed ID: 18436638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dendritic excitability during increased synaptic activity in rat neocortical L5 pyramidal neurons.
    Bar-Yehuda D; Ben-Porat H; Korngreen A
    Eur J Neurosci; 2008 Dec; 28(11):2183-94. PubMed ID: 19046365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo dual intra- and extracellular recordings suggest bidirectional coupling between CA1 pyramidal neurons.
    Chorev E; Brecht M
    J Neurophysiol; 2012 Sep; 108(6):1584-93. PubMed ID: 22723679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weak sinusoidal electric fields entrain spontaneous Ca transients in the dendritic tufts of CA1 pyramidal cells in rat hippocampal slice preparations.
    Maeda K; Maruyama R; Nagae T; Inoue M; Aonishi T; Miyakawa H
    PLoS One; 2015; 10(3):e0122263. PubMed ID: 25811836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarization of a spherical cell in a nonuniform extracellular electric field.
    Lee DC; Grill WM
    Ann Biomed Eng; 2005 May; 33(5):603-15. PubMed ID: 15981861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological origins of evoked magnetic fields and extracellular field potentials produced by guinea-pig CA3 hippocampal slices.
    Murakami S; Zhang T; Hirose A; Okada YC
    J Physiol; 2002 Oct; 544(Pt 1):237-51. PubMed ID: 12356895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. I
    Toloza EHS; Negahbani E; Fröhlich F
    J Neurophysiol; 2018 Mar; 119(3):1029-1036. PubMed ID: 29187553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of spatially inhomogeneous extracellular electric fields on neurons.
    Anastassiou CA; Montgomery SM; Barahona M; Buzsáki G; Koch C
    J Neurosci; 2010 Feb; 30(5):1925-36. PubMed ID: 20130201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An analytic solution of the cable equation predicts frequency preference of a passive shunt-end cylindrical cable in response to extracellular oscillating electric fields.
    Monai H; Omori T; Okada M; Inoue M; Miyakawa H; Aonishi T
    Biophys J; 2010 Feb; 98(4):524-33. PubMed ID: 20159148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.