BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 21295574)

  • 41. Corticosterone, brood size, and hatch order in free-living Florida scrub-jay (Aphelocoma coerulescens) nestlings.
    Rensel MA; Wilcoxen TE; Schoech SJ
    Gen Comp Endocrinol; 2011 Apr; 171(2):197-202. PubMed ID: 21291887
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Global pattern of nest predation is disrupted by climate change in shorebirds.
    Kubelka V; Šálek M; Tomkovich P; Végvári Z; Freckleton RP; Székely T
    Science; 2018 Nov; 362(6415):680-683. PubMed ID: 30409881
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nestlings reduce their predation risk by attending to predator-information encoded within conspecific alarm calls.
    Barati A; McDonald PG
    Sci Rep; 2017 Sep; 7(1):11736. PubMed ID: 28916776
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Selection for fast and slow exploration affects baseline and stress-induced corticosterone excretion in Great tit nestlings, Parus major.
    Stöwe M; Rosivall B; Drent PJ; Möstl E
    Horm Behav; 2010 Nov; 58(5):864-71. PubMed ID: 20807535
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Condition-dependent effects of corticosterone on a carotenoid-based begging signal in house sparrows.
    Loiseau C; Fellous S; Haussy C; Chastel O; Sorci G
    Horm Behav; 2008 Jan; 53(1):266-73. PubMed ID: 18029282
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nest predation increases with parental activity: separating nest site and parental activity effects.
    Martin TE; Scott J; Menge C
    Proc Biol Sci; 2000 Nov; 267(1459):2287-93. PubMed ID: 11413645
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nest predation risk and deposition of yolk steroids in a cavity-nesting songbird: an experimental test.
    Mouton JC; Duckworth RA; Paitz RT; Martin TE
    J Exp Biol; 2022 Apr; 225(7):. PubMed ID: 35352809
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Avian growth and development rates and age-specific mortality: the roles of nest predation and adult mortality.
    Remes V
    J Evol Biol; 2007 Jan; 20(1):320-5. PubMed ID: 17210025
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Perceived predation risk reduces the number of offspring songbirds produce per year.
    Zanette LY; White AF; Allen MC; Clinchy M
    Science; 2011 Dec; 334(6061):1398-401. PubMed ID: 22158817
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Assessment of predation risk through referential communication in incubating birds.
    Suzuki TN
    Sci Rep; 2015 May; 5():10239. PubMed ID: 25985093
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulation of free corticosterone and CBG capacity under different environmental conditions in altricial nestlings.
    Almasi B; Roulin A; Jenni-Eiermann S; Breuner CW; Jenni L
    Gen Comp Endocrinol; 2009; 164(2-3):117-24. PubMed ID: 19467233
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nest predation and the evolution of conspecific brood parasitism: from risk spreading to risk assessment.
    Pöysä H; Pesonen M
    Am Nat; 2007 Jan; 169(1):94-104. PubMed ID: 17206588
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Maternal steroids in egg yolk as a pathway to translate predation risk to offspring: experiments with great tits.
    Coslovsky M; Groothuis T; de Vries B; Richner H
    Gen Comp Endocrinol; 2012 Apr; 176(2):211-4. PubMed ID: 22326354
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The influence of vigilance on intraguild predation.
    Kimbrell T; Holt RD; Lundberg P
    J Theor Biol; 2007 Nov; 249(2):218-34. PubMed ID: 17888456
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Conditions for the spread of conspicuous warning signals: a numerical model with novel insights.
    Puurtinen M; Kaitala V
    Evolution; 2006 Nov; 60(11):2246-56. PubMed ID: 17236418
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stress and success: individual differences in the glucocorticoid stress response predict behavior and reproductive success under high predation risk.
    Vitousek MN; Jenkins BR; Safran RJ
    Horm Behav; 2014 Nov; 66(5):812-9. PubMed ID: 25461975
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evolution of nesting height in an endangered Hawaiian forest bird in response to a non-native predator.
    Vanderwerf EA
    Conserv Biol; 2012 Oct; 26(5):905-11. PubMed ID: 22830652
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prey life-history and bioenergetic responses across a predation gradient.
    Rennie MD; Purchase CF; Shuter BJ; Collins NC; Abrams PA; Morgan GE
    J Fish Biol; 2010 Oct; 77(6):1230-51. PubMed ID: 21039502
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The adrenocortical response of tufted puffin chicks to nutritional deficits.
    Kitaysky AS; Romano MD; Piatt JF; Wingfield JC; Kikuchi M
    Horm Behav; 2005 May; 47(5):606-19. PubMed ID: 15811363
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Discriminating the drivers of edge effects on nest predation: forest edges reduce capture rates of ship rats (Rattus rattus), a globally invasive nest predator, by altering vegetation structure.
    Ruffell J; Didham RK; Barrett P; Gorman N; Pike R; Hickey-Elliott A; Sievwright K; Armstrong DP
    PLoS One; 2014; 9(11):e113098. PubMed ID: 25412340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.