BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 21295592)

  • 1. Inferring the effect of therapy on tumors showing stochastic Gompertzian growth.
    Albano G; Giorno V; Román-Román P; Torres-Ruiz F
    J Theor Biol; 2011 May; 276(1):67-77. PubMed ID: 21295592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferring the effect of therapies on tumor growth by using diffusion processes.
    Román-Román P; Torres-Ruiz F
    J Theor Biol; 2012 Dec; 314():34-56. PubMed ID: 22906590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the effect of a therapy able to modify both the growth rates in a Gompertz stochastic model.
    Albano G; Giorno V; Román-Román P; Torres-Ruiz F
    Math Biosci; 2013 Sep; 245(1):12-21. PubMed ID: 23347900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic Gompertz model of tumour cell growth.
    Lo CF
    J Theor Biol; 2007 Sep; 248(2):317-21. PubMed ID: 17555768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A principle of fractal-stochastic dualism and Gompertzian dynamics of growth and self-organization.
    Waliszewski P
    Biosystems; 2005 Oct; 82(1):61-73. PubMed ID: 16024163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microenvironment based model of antimitotic therapy of Gompertzian tumor growth.
    Kozusko F; Bourdeau M; Bajzer Z; Dingli D
    Bull Math Biol; 2007 Jul; 69(5):1691-708. PubMed ID: 17577604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the therapy effect for a stochastic growth Gompertz-type model.
    Albano G; Giorno V; Román-Román P; Torres-Ruiz F
    Math Biosci; 2012 Feb; 235(2):148-60. PubMed ID: 22142644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A stochastic model in tumor growth.
    Albano G; Giorno V
    J Theor Biol; 2006 Sep; 242(2):329-36. PubMed ID: 16620871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating and determining the effect of a therapy on tumor dynamics by means of a modified Gompertz diffusion process.
    Albano G; Giorno V; Román-Román P; Román-Román S; Torres-Ruiz F
    J Theor Biol; 2015 Jan; 364():206-19. PubMed ID: 25242298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inference on an heteroscedastic Gompertz tumor growth model.
    Albano G; Giorno V; Román-Román P; Román-Román S; Serrano-Pérez JJ; Torres-Ruiz F
    Math Biosci; 2020 Oct; 328():108428. PubMed ID: 32712317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-dependent differences in sensitivity of LOX human melanoma tumors in nude rats to dacarbazine and mitozolomide, but not to doxorubicin and cisplatin.
    Kjønniksen I; Breistøl K; Fodstad O
    Cancer Res; 1992 Mar; 52(5):1347-51. PubMed ID: 1737396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Apoptosis-inducing and anti-tumor effect of cyclophosphamide, cisplatin and adriamycin used separately or combined in murine lymphosarcoma LS].
    Nikolin VP; Kaledin VI; Baĭmak TIu; Galiamova MR; Popova NA; Voĭtsitskiĭ VE
    Vopr Onkol; 2002; 48(2):211-5. PubMed ID: 12227071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination cyclophosphamide, doxorubicin, and cisplatin (CAP) chemotherapy for extensive non-small cell carcinomas of the lung.
    Davis S; Rambotti P; Park YK
    Cancer Treat Rep; 1981; 65(11-12):955-8. PubMed ID: 7028257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new Gompertz-type diffusion process with application to random growth.
    Gutiérrez-Jáimez R; Román P; Romero D; Serrano JJ; Torres F
    Math Biosci; 2007 Jul; 208(1):147-65. PubMed ID: 17275859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic modelling of the role of cisplatin in altered fractionation schedules for head and neck cancer.
    Marcu L; Bezak E
    Phys Med; 2010 Oct; 26(4):177-83. PubMed ID: 20034829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On time-space of nonlinear phenomena with Gompertzian dynamics.
    Waliszewski P; Konarski J
    Biosystems; 2005 Apr; 80(1):91-7. PubMed ID: 15740838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A generalization of Gompertz law compatible with the Gyllenberg-Webb theory for tumour growth.
    d'Onofrio A; Fasano A; Monechi B
    Math Biosci; 2011 Mar; 230(1):45-54. PubMed ID: 21232543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer simulation of cell growth governed by stochastic processes: application to clonal growth cancer models.
    Conolly RB; Kimbell JS
    Toxicol Appl Pharmacol; 1994 Feb; 124(2):284-95. PubMed ID: 8122275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling embryogenesis and cancer: an approach based on an equilibrium between the autostabilization of stochastic gene expression and the interdependence of cells for proliferation.
    Laforge B; Guez D; Martinez M; Kupiec JJ
    Prog Biophys Mol Biol; 2005 Sep; 89(1):93-120. PubMed ID: 15826673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling tumor growth in the presence of a therapy with an effect on rate growth and variability by means of a modified Gompertz diffusion process.
    Román-Román P; Román-Román S; Serrano-Pérez JJ; Torres-Ruiz F
    J Theor Biol; 2016 Oct; 407():1-17. PubMed ID: 27449789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.