These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 21295688)

  • 41. [New insight into MyoD regulation: involvement in rhabdomyosarcoma pathway?].
    Tintignac LA; Leibovitch MP; Leibovitch SA
    Bull Cancer; 2001 Jun; 88(6):545-8. PubMed ID: 11459700
    [TBL] [Abstract][Full Text] [Related]  

  • 42. MicroRNAs involved in skeletal muscle development and their roles in rhabdomyosarcoma pathogenesis.
    Novák J; Vinklárek J; Bienertová-Vašků J; Slabý O
    Pediatr Blood Cancer; 2013 Nov; 60(11):1739-46. PubMed ID: 23813576
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cadherin-11 is highly expressed in rhabdomyosarcomas and during differentiation of myoblasts in vitro.
    Markus MA; Reichmuth C; Atkinson MJ; Reich U; Hoffmann I; Balling R; Anderer U; Höfler H
    J Pathol; 1999 Jan; 187(2):164-72. PubMed ID: 10365091
    [TBL] [Abstract][Full Text] [Related]  

  • 44. p21WAF1 expression induced by MEK/ERK pathway activation or inhibition correlates with growth arrest, myogenic differentiation and onco-phenotype reversal in rhabdomyosarcoma cells.
    Ciccarelli C; Marampon F; Scoglio A; Mauro A; Giacinti C; De Cesaris P; Zani BM
    Mol Cancer; 2005 Dec; 4():41. PubMed ID: 16351709
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of microRNAs in skeletal muscle development and rhabdomyosarcoma (review).
    Ju H; Yang Y; Sheng A; Jiang X
    Mol Med Rep; 2015 Jun; 11(6):4019-24. PubMed ID: 25633282
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Wnt Signaling in Rhabdomyosarcoma - A Potential Targeted Therapy Option.
    Chen E
    Curr Drug Targets; 2016; 17(11):1245-51. PubMed ID: 26122033
    [TBL] [Abstract][Full Text] [Related]  

  • 47. MicroRNAs and epigenetic mechanisms of rhabdomyosarcoma development.
    Cieśla M; Dulak J; Józkowicz A
    Int J Biochem Cell Biol; 2014 Aug; 53():482-92. PubMed ID: 24831881
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genetic modeling of human rhabdomyosarcoma.
    Linardic CM; Downie DL; Qualman S; Bentley RC; Counter CM
    Cancer Res; 2005 Jun; 65(11):4490-5. PubMed ID: 15930263
    [TBL] [Abstract][Full Text] [Related]  

  • 49. PIP3 depletion rescues myoblast fusion defects in human rhabdomyosarcoma cells.
    Lian YL; Chen KW; Chou YT; Ke TL; Chen BC; Lin YC; Chen L
    J Cell Sci; 2020 Apr; 133(8):. PubMed ID: 32220979
    [TBL] [Abstract][Full Text] [Related]  

  • 50. MiRNAs as Players in Rhabdomyosarcoma Development.
    Gasparini P; Ferrari A; Casanova M; Limido F; Massimino M; Sozzi G; Fortunato O
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31752446
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hedgehog Pathway Drives Fusion-Negative Rhabdomyosarcoma Initiated From Non-myogenic Endothelial Progenitors.
    Drummond CJ; Hanna JA; Garcia MR; Devine DJ; Heyrana AJ; Finkelstein D; Rehg JE; Hatley ME
    Cancer Cell; 2018 Jan; 33(1):108-124.e5. PubMed ID: 29316425
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Overexpression of the skNAC gene in human rhabdomyosarcoma cells enhances their differentiation potential and inhibits tumor cell growth and spreading.
    Berkholz J; Kuzyniak W; Hoepfner M; Munz B
    Clin Exp Metastasis; 2014 Dec; 31(8):869-79. PubMed ID: 25209525
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular and cellular biology of rhabdomyosarcoma.
    De Giovanni C; Landuzzi L; Nicoletti G; Lollini PL; Nanni P
    Future Oncol; 2009 Nov; 5(9):1449-75. PubMed ID: 19903072
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rhabdomyoblastic Differentiation in Head and Neck Malignancies Other Than Rhabdomyosarcoma.
    Bishop JA; Thompson LD; Cardesa A; Barnes L; Lewis JS; Triantafyllou A; Hellquist H; Stenman G; Hunt JL; Williams MD; Slootweg PJ; Devaney KO; Gnepp DR; Wenig BM; Rinaldo A; Ferlito A
    Head Neck Pathol; 2015 Dec; 9(4):507-18. PubMed ID: 25757816
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Zebrafish rhabdomyosarcoma reflects the developmental stage of oncogene expression during myogenesis.
    Storer NY; White RM; Uong A; Price E; Nielsen GP; Langenau DM; Zon LI
    Development; 2013 Jul; 140(14):3040-50. PubMed ID: 23821038
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Decoding the 'embryonic' nature of embryonal rhabdomyosarcoma.
    Lav R; Heera R; Cherian LM
    J Dev Orig Health Dis; 2015 Jun; 6(3):163-8. PubMed ID: 25740270
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Muscular dystrophies share pathogenetic mechanisms with muscle sarcomas.
    Fanzani A; Monti E; Donato R; Sorci G
    Trends Mol Med; 2013 Sep; 19(9):546-54. PubMed ID: 23890422
    [TBL] [Abstract][Full Text] [Related]  

  • 58. DEPDC1B is a key regulator of myoblast proliferation in mouse and man.
    Figeac N; Pruller J; Hofer I; Fortier M; Ortuste Quiroga HP; Banerji CRS; Zammit PS
    Cell Prolif; 2020 Jan; 53(1):e12717. PubMed ID: 31825138
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recent Insights into Notch Signaling in Embryonal Rhabdomyosarcoma.
    Conti B; Slemmons KK; Rota R; Linardic CM
    Curr Drug Targets; 2016; 17(11):1235-44. PubMed ID: 26343114
    [TBL] [Abstract][Full Text] [Related]  

  • 60. MicroRNAs in rhabdomyosarcoma: pathogenetic implications and translational potentiality.
    Rota R; Ciarapica R; Giordano A; Miele L; Locatelli F
    Mol Cancer; 2011 Sep; 10():120. PubMed ID: 21943149
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.