These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21295974)

  • 1. Depolymerization of steam-treated lignin for the production of green chemicals.
    Lavoie JM; Baré W; Bilodeau M
    Bioresour Technol; 2011 Apr; 102(7):4917-20. PubMed ID: 21295974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steam explosion lignins; their extraction, structure and potential as feedstock for biodiesel and chemicals.
    Li J; Gellerstedt G; Toven K
    Bioresour Technol; 2009 May; 100(9):2556-61. PubMed ID: 19157871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dry pretreatment of lignocellulose with extremely low steam and water usage for bioethanol production.
    Zhang J; Wang X; Chu D; He Y; Bao J
    Bioresour Technol; 2011 Mar; 102(6):4480-8. PubMed ID: 21277774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and analysis of biomass lignins.
    Compere AL; Griffith WL
    Methods Mol Biol; 2009; 581():185-212. PubMed ID: 19768624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of different pretreatment methods based on residual lignin effect on the enzymatic hydrolysis of switchgrass.
    Nlewem KC; Thrash ME
    Bioresour Technol; 2010 Jul; 101(14):5426-30. PubMed ID: 20219364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UV-Vis as quantification tool for solubilized lignin following a single-shot steam process.
    Lee RA; Bédard C; Berberi V; Beauchet R; Lavoie JM
    Bioresour Technol; 2013 Sep; 144():658-63. PubMed ID: 23880507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion.
    Li J; Henriksson G; Gellerstedt G
    Bioresour Technol; 2007 Nov; 98(16):3061-8. PubMed ID: 17141499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquefaction of bio-mass in hot-compressed water for the production of phenolic compounds.
    Tymchyshyn M; Xu CC
    Bioresour Technol; 2010 Apr; 101(7):2483-90. PubMed ID: 20031393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of lignocellulosic biomass by ionic liquid for biorefinery fractionation.
    Labbé N; Kline LM; Moens L; Kim K; Kim PC; Hayes DG
    Bioresour Technol; 2012 Jan; 104():701-7. PubMed ID: 22079688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lignin changes after steam explosion and laccase-mediator treatment of eucalyptus wood chips.
    Martin-Sampedro R; Capanema EA; Hoeger I; Villar JC; Rojas OJ
    J Agric Food Chem; 2011 Aug; 59(16):8761-9. PubMed ID: 21749069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reductive catalytic fractionation: state of the art of the lignin-first biorefinery.
    Renders T; Van den Bossche G; Vangeel T; Van Aelst K; Sels B
    Curr Opin Biotechnol; 2019 Apr; 56():193-201. PubMed ID: 30677700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Phenolic foam prepared by lignin from a steam-explosion derived biorefinery of corn stalk].
    Wang G; Chen H
    Sheng Wu Gong Cheng Xue Bao; 2014 Jun; 30(6):901-10. PubMed ID: 25212007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of chemical form of sodium on the product characteristics of alkali lignin pyrolysis.
    Guo DL; Yuan HY; Yin XL; Wu CZ; Wu SB; Zhou ZQ
    Bioresour Technol; 2014; 152():147-53. PubMed ID: 24291315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks.
    Silverstein RA; Chen Y; Sharma-Shivappa RR; Boyette MD; Osborne J
    Bioresour Technol; 2007 Nov; 98(16):3000-11. PubMed ID: 17158046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental friendly method for the extraction of coir fibre and isolation of nanofibre.
    Abraham E; Deepa B; Pothen LA; Cintil J; Thomas S; John MJ; Anandjiwala R; Narine SS
    Carbohydr Polym; 2013 Feb; 92(2):1477-83. PubMed ID: 23399179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production.
    Bruni E; Jensen AP; Angelidaki I
    Bioresour Technol; 2010 Nov; 101(22):8713-7. PubMed ID: 20638274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural elucidation of sorghum lignins from an integrated biorefinery process based on hydrothermal and alkaline treatments.
    Sun SL; Wen JL; Ma MG; Sun RC
    J Agric Food Chem; 2014 Aug; 62(32):8120-8. PubMed ID: 25090032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractionation of wheat straw by atmospheric acetic acid process.
    Pan X; Sano Y
    Bioresour Technol; 2005 Jul; 96(11):1256-63. PubMed ID: 15734313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractionation of flax shives by water and aqueous ammonia treatment in a pressurized low-polarity water extractor.
    Buranov AU; Mazza G
    J Agric Food Chem; 2007 Oct; 55(21):8548-55. PubMed ID: 17896812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of processing conditions for the fractionation of triticale straw using pressurized low polarity water.
    Pronyk C; Mazza G
    Bioresour Technol; 2011 Jan; 102(2):2016-25. PubMed ID: 20933393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.