These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 21295988)
1. Microarray analysis of ripening-regulated gene expression and its modulation by 1-MCP and hexanal. Tiwari K; Paliyath G Plant Physiol Biochem; 2011 Mar; 49(3):329-40. PubMed ID: 21295988 [TBL] [Abstract][Full Text] [Related]
2. Carotenoid accumulation during tomato fruit ripening is modulated by the auxin-ethylene balance. Su L; Diretto G; Purgatto E; Danoun S; Zouine M; Li Z; Roustan JP; Bouzayen M; Giuliano G; Chervin C BMC Plant Biol; 2015 May; 15():114. PubMed ID: 25953041 [TBL] [Abstract][Full Text] [Related]
3. Expression and internal feedback regulation of ACC synthase and ACC oxidase genes in ripening tomato fruit. Nakatsuka A; Shiomi S; Kubo Y; Inaba A Plant Cell Physiol; 1997 Oct; 38(10):1103-10. PubMed ID: 9399434 [TBL] [Abstract][Full Text] [Related]
4. Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. Lee JM; Joung JG; McQuinn R; Chung MY; Fei Z; Tieman D; Klee H; Giovannoni J Plant J; 2012 Apr; 70(2):191-204. PubMed ID: 22111515 [TBL] [Abstract][Full Text] [Related]
5. Suppression of tomato SlNAC1 transcription factor delays fruit ripening. Meng C; Yang D; Ma X; Zhao W; Liang X; Ma N; Meng Q J Plant Physiol; 2016 Apr; 193():88-96. PubMed ID: 26962710 [TBL] [Abstract][Full Text] [Related]
6. A tomato MADS-box transcription factor, SlMADS1, acts as a negative regulator of fruit ripening. Dong T; Hu Z; Deng L; Wang Y; Zhu M; Zhang J; Chen G Plant Physiol; 2013 Oct; 163(2):1026-36. PubMed ID: 24006286 [TBL] [Abstract][Full Text] [Related]
7. Effect of 1-methylcyclopropene post-harvest treatment on ripening process in cherry tomato fruit (Lycopersicon esculentum var. cerasiforme). Opiyo AM; Ying TJ Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Feb; 31(1):27-33. PubMed ID: 15692175 [TBL] [Abstract][Full Text] [Related]
8. Non-climacteric fruit ripening in pepper: increased transcription of EIL-like genes normally regulated by ethylene. Lee S; Chung EJ; Joung YH; Choi D Funct Integr Genomics; 2010 Mar; 10(1):135-46. PubMed ID: 19756789 [TBL] [Abstract][Full Text] [Related]
9. Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Nakatsuka A; Murachi S; Okunishi H; Shiomi S; Nakano R; Kubo Y; Inaba A Plant Physiol; 1998 Dec; 118(4):1295-305. PubMed ID: 9847103 [TBL] [Abstract][Full Text] [Related]
10. The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening. Bemer M; Karlova R; Ballester AR; Tikunov YM; Bovy AG; Wolters-Arts M; Rossetto Pde B; Angenent GC; de Maagd RA Plant Cell; 2012 Nov; 24(11):4437-51. PubMed ID: 23136376 [TBL] [Abstract][Full Text] [Related]
11. Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Ronen G; Cohen M; Zamir D; Hirschberg J Plant J; 1999 Feb; 17(4):341-51. PubMed ID: 10205893 [TBL] [Abstract][Full Text] [Related]
12. Lycopene accumulation affects the biosynthesis of some carotenoid-related volatiles independent of ethylene in tomato. Gao H; Zhu H; Shao Y; Chen A; Lu C; Zhu B; Luo Y J Integr Plant Biol; 2008 Aug; 50(8):991-6. PubMed ID: 18713349 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of the ethylene response by 1-MCP in tomato suggests that polyamines are not involved in delaying ripening, but may moderate the rate of ripening or over-ripening. Tassoni A; Watkins CB; Davies PJ J Exp Bot; 2006; 57(12):3313-25. PubMed ID: 16920766 [TBL] [Abstract][Full Text] [Related]
14. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. Alexander L; Grierson D J Exp Bot; 2002 Oct; 53(377):2039-55. PubMed ID: 12324528 [TBL] [Abstract][Full Text] [Related]
15. Functional Validation of Phytoene Synthase and Lycopene ε-Cyclase Genes for High Lycopene Content in Autumn Olive Fruit ( Wang T; Hou Y; Hu H; Wang C; Zhang W; Li H; Cheng Z; Yang L J Agric Food Chem; 2020 Oct; 68(41):11503-11511. PubMed ID: 32936623 [TBL] [Abstract][Full Text] [Related]
16. Expression profile of genes coding for carotenoid biosynthetic pathway during ripening and their association with accumulation of lycopene in tomato fruits. Smita S; Rajwanshi R; Lenka SK; Katiyar A; Chinnusamy V; Bansal KC J Genet; 2013 Dec; 92(3):363-8. PubMed ID: 24371159 [TBL] [Abstract][Full Text] [Related]
17. A STAY-GREEN protein SlSGR1 regulates lycopene and β-carotene accumulation by interacting directly with SlPSY1 during ripening processes in tomato. Luo Z; Zhang J; Li J; Yang C; Wang T; Ouyang B; Li H; Giovannoni J; Ye Z New Phytol; 2013 Apr; 198(2):442-452. PubMed ID: 23406468 [TBL] [Abstract][Full Text] [Related]
18. Fruit-specific RNAi-mediated suppression of SlNCED1 increases both lycopene and β-carotene contents in tomato fruit. Sun L; Yuan B; Zhang M; Wang L; Cui M; Wang Q; Leng P J Exp Bot; 2012 May; 63(8):3097-108. PubMed ID: 22345638 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of yeast spermidine synthase impacts ripening, senescence and decay symptoms in tomato. Nambeesan S; Datsenka T; Ferruzzi MG; Malladi A; Mattoo AK; Handa AK Plant J; 2010 Sep; 63(5):836-47. PubMed ID: 20584149 [TBL] [Abstract][Full Text] [Related]
20. A non-climacteric fruit gene CaMADS-RIN regulates fruit ripening and ethylene biosynthesis in climacteric fruit. Dong T; Chen G; Tian S; Xie Q; Yin W; Zhang Y; Hu Z PLoS One; 2014; 9(4):e95559. PubMed ID: 24751940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]