BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 21296048)

  • 21. Resonance Raman spectroscopy of nitric oxide reductase and cbb(3) heme-copper oxidase.
    Pinakoulaki E; Varotsis C
    J Phys Chem B; 2008 Feb; 112(6):1851-7. PubMed ID: 18211060
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The nitric-oxide reductase from Paracoccus denitrificans uses a single specific proton pathway.
    Ter Beek J; Krause N; Reimann J; Lachmann P; Ädelroth P
    J Biol Chem; 2013 Oct; 288(42):30626-30635. PubMed ID: 24014024
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation and characterization of nitric oxide reductase from Paracoccus halodenitrificans.
    Sakurai N; Sakurai T
    Biochemistry; 1997 Nov; 36(45):13809-15. PubMed ID: 9374857
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrochemical behaviour of bacterial nitric oxide reductase-evidence of low redox potential non-heme Fe(B) gives new perspectives on the catalytic mechanism.
    Cordas CM; Duarte AG; Moura JJ; Moura I
    Biochim Biophys Acta; 2013 Mar; 1827(3):233-8. PubMed ID: 23142527
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A pathway for protons in nitric oxide reductase from Paracoccus denitrificans.
    Reimann J; Flock U; Lepp H; Honigmann A; Adelroth P
    Biochim Biophys Acta; 2007 May; 1767(5):362-73. PubMed ID: 17466934
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two conserved glutamates in the bacterial nitric oxide reductase are essential for activity but not assembly of the enzyme.
    Butland G; Spiro S; Watmough NJ; Richardson DJ
    J Bacteriol; 2001 Jan; 183(1):189-99. PubMed ID: 11114916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NO binding and dynamics in reduced heme-copper oxidases aa3 from Paracoccus denitrificans and ba3 from Thermus thermophilus.
    Pilet E; Nitschke W; Rappaport F; Soulimane T; Lambry JC; Liebl U; Vos MH
    Biochemistry; 2004 Nov; 43(44):14118-27. PubMed ID: 15518562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Redox properties of Thermus thermophilus ba3: different electron-proton coupling in oxygen reductases?
    Sousa FL; Veríssimo AF; Baptista AM; Soulimane T; Teixeira M; Pereira MM
    Biophys J; 2008 Mar; 94(6):2434-41. PubMed ID: 18065462
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Correlations between the Electronic Properties of Shewanella oneidensis Cytochrome c Nitrite Reductase (ccNiR) and Its Structure: Effects of Heme Oxidation State and Active Site Ligation.
    Stein N; Love D; Judd ET; Elliott SJ; Bennett B; Pacheco AA
    Biochemistry; 2015 Jun; 54(24):3749-58. PubMed ID: 26042961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The respiratory nitric oxide reductase (NorBC) from Paracoccus denitrificans.
    Field SJ; Thorndycroft FH; Matorin AD; Richardson DJ; Watmough NJ
    Methods Enzymol; 2008; 437():79-101. PubMed ID: 18433624
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetics of reduction by substrate or dithionite and heme-heme electron transfer in the multiheme hydroxylamine oxidoreductase.
    Hooper AB; Tran VM; Balny C
    Eur J Biochem; 1984 Jun; 141(3):565-71. PubMed ID: 6745259
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Water-hydroxide exchange reactions at the catalytic site of heme-copper oxidases.
    Brändén M; Namslauer A; Hansson O; Aasa R; Brzezinski P
    Biochemistry; 2003 Nov; 42(45):13178-84. PubMed ID: 14609328
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sulfur dehydrogenase of Paracoccus pantotrophus: the heme-2 domain of the molybdoprotein cytochrome c complex is dispensable for catalytic activity.
    Bardischewsky F; Quentmeier A; Rother D; Hellwig P; Kostka S; Friedrich CG
    Biochemistry; 2005 May; 44(18):7024-34. PubMed ID: 15865447
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of the redox centres of periplasmic selenate reductase from Thauera selenatis by EPR spectroscopy.
    Dridge EJ; Watts CA; Jepson BJ; Line K; Santini JM; Richardson DJ; Butler CS
    Biochem J; 2007 Nov; 408(1):19-28. PubMed ID: 17688424
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electron and proton transfer in the arginine-54-methionine mutant of cytochrome c oxidase from Paracoccus denitrificans.
    Jasaitis A; Backgren C; Morgan JE; Puustinen A; Verkhovsky MI; Wikström M
    Biochemistry; 2001 May; 40(17):5269-74. PubMed ID: 11318650
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Redox and chemical activities of the hemes in the sulfur oxidation pathway enzyme SoxAX.
    Bradley JM; Marritt SJ; Kihlken MA; Haynes K; Hemmings AM; Berks BC; Cheesman MR; Butt JN
    J Biol Chem; 2012 Nov; 287(48):40350-9. PubMed ID: 23060437
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression of the Escherichia coli cyo operon in Paracoccus denitrificans results in a fully active quinol oxidase of unexpected heme composition.
    Schröter T; Winterstein C; Ludwig B; Richter OM
    FEBS Lett; 1998 Aug; 432(3):109-12. PubMed ID: 9720906
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitric-oxide reductase. Structure and properties of the catalytic site from resonance Raman scattering.
    Pinakoulaki E; Gemeinhardt S; Saraste M; Varotsis C
    J Biol Chem; 2002 Jun; 277(26):23407-13. PubMed ID: 11971903
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Redox titration of all electron carriers of cytochrome c oxidase by Fourier transform infrared spectroscopy.
    Gorbikova EA; Vuorilehto K; Wikström M; Verkhovsky MI
    Biochemistry; 2006 May; 45(17):5641-9. PubMed ID: 16634645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutation of Arg-54 strongly influences heme composition and rate and directionality of electron transfer in Paracoccus denitrificans cytochrome c oxidase.
    Kannt A; Pfitzner U; Ruitenberg M; Hellwig P; Ludwig B; Mäntele W; Fendler K; Michel H
    J Biol Chem; 1999 Dec; 274(53):37974-81. PubMed ID: 10608865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.