BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 21296096)

  • 1. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease.
    Yao H; Rahman I
    Toxicol Appl Pharmacol; 2011 Jul; 254(2):72-85. PubMed ID: 21296096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Mitochondria and Oxidative/Antioxidative Imbalance in Pathobiology of Chronic Obstructive Pulmonary Disease.
    Białas AJ; Sitarek P; Miłkowska-Dymanowska J; Piotrowski WJ; Górski P
    Oxid Med Cell Longev; 2016; 2016():7808576. PubMed ID: 28105251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deacetylases and NF-kappaB in redox regulation of cigarette smoke-induced lung inflammation: epigenetics in pathogenesis of COPD.
    Rajendrasozhan S; Yang SR; Edirisinghe I; Yao H; Adenuga D; Rahman I
    Antioxid Redox Signal; 2008 Apr; 10(4):799-811. PubMed ID: 18220485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current perspectives on role of chromatin modifications and deacetylases in lung inflammation in COPD.
    Rajendrasozhan S; Yao H; Rahman I
    COPD; 2009 Aug; 6(4):291-7. PubMed ID: 19811389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacological and dietary antioxidant therapies for chronic obstructive pulmonary disease.
    Biswas S; Hwang JW; Kirkham PA; Rahman I
    Curr Med Chem; 2013; 20(12):1496-530. PubMed ID: 22963552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decline in NRF2-regulated antioxidants in chronic obstructive pulmonary disease lungs due to loss of its positive regulator, DJ-1.
    Malhotra D; Thimmulappa R; Navas-Acien A; Sandford A; Elliott M; Singh A; Chen L; Zhuang X; Hogg J; Pare P; Tuder RM; Biswal S
    Am J Respir Crit Care Med; 2008 Sep; 178(6):592-604. PubMed ID: 18556627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress and gene transcription in asthma and chronic obstructive pulmonary disease: antioxidant therapeutic targets.
    Rahman I
    Curr Drug Targets Inflamm Allergy; 2002 Sep; 1(3):291-315. PubMed ID: 14561194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of DNA methylation signatures on NF-κB and STAT3 pathway genes and TET activity in cigarette smoke extract-challenged cells/COPD exacerbation model in vitro.
    Kaur G; Batra S
    Cell Biol Toxicol; 2020 Oct; 36(5):459-480. PubMed ID: 32342329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current concepts on the role of inflammation in COPD and lung cancer.
    Yao H; Rahman I
    Curr Opin Pharmacol; 2009 Aug; 9(4):375-83. PubMed ID: 19615942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress and chromatin remodeling in chronic obstructive pulmonary disease and smoking-related diseases.
    Sundar IK; Yao H; Rahman I
    Antioxid Redox Signal; 2013 May; 18(15):1956-71. PubMed ID: 22978694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. COPD: balancing oxidants and antioxidants.
    Fischer BM; Voynow JA; Ghio AJ
    Int J Chron Obstruct Pulmon Dis; 2015; 10():261-76. PubMed ID: 25673984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current perspectives of oxidative stress and its measurement in chronic obstructive pulmonary disease.
    Lin JL; Thomas PS
    COPD; 2010 Aug; 7(4):291-306. PubMed ID: 20673039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effects of Resveratrol on Inflammation and Oxidative Stress in a Rat Model of Chronic Obstructive Pulmonary Disease.
    Wang XL; Li T; Li JH; Miao SY; Xiao XZ
    Molecules; 2017 Sep; 22(9):. PubMed ID: 28895883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Klotho expression is reduced in COPD airway epithelial cells: effects on inflammation and oxidant injury.
    Gao W; Yuan C; Zhang J; Li L; Yu L; Wiegman CH; Barnes PJ; Adcock IM; Huang M; Yao X
    Clin Sci (Lond); 2015 Dec; 129(12):1011-23. PubMed ID: 26201096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased DNA damage in patients with chronic obstructive pulmonary disease who had once smoked or been exposed to biomass.
    Ceylan E; Kocyigit A; Gencer M; Aksoy N; Selek S
    Respir Med; 2006 Jul; 100(7):1270-6. PubMed ID: 16307872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulmonary and systemic oxidant/antioxidant imbalance in chronic obstructive pulmonary disease.
    MacNee W
    Proc Am Thorac Soc; 2005; 2(1):50-60. PubMed ID: 16113469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Update in chronic obstructive pulmonary disease: role of antioxidant and metabolizing gene polymorphisms.
    Lakhdar R; Denden S; Kassab A; Leban N; Knani J; Lefranc G; Miled A; Chibani JB; Khelil AH
    Exp Lung Res; 2011 Aug; 37(6):364-75. PubMed ID: 21721950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of oxidative stress in COPD: current concepts and perspectives.
    Cavalcante AG; de Bruin PF
    J Bras Pneumol; 2009 Dec; 35(12):1227-37. PubMed ID: 20126926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ergosterol attenuates cigarette smoke extract-induced COPD by modulating inflammation, oxidative stress and apoptosis
    Sun X; Feng X; Zheng D; Li A; Li C; Li S; Zhao Z
    Clin Sci (Lond); 2019 Jul; 133(13):1523-1536. PubMed ID: 31270147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional significance of apoptosis in chronic obstructive pulmonary disease.
    Park JW; Ryter SW; Choi AM
    COPD; 2007 Dec; 4(4):347-53. PubMed ID: 18027162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.