BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 21296163)

  • 1. Mapping elasticity moduli of atherosclerotic plaque in situ via atomic force microscopy.
    Tracqui P; Broisat A; Toczek J; Mesnier N; Ohayon J; Riou L
    J Struct Biol; 2011 Apr; 174(1):115-23. PubMed ID: 21296163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regional atherosclerotic plaque properties in ApoE-/- mice quantified by atomic force, immunofluorescence, and light microscopy.
    Hayenga HN; Trache A; Trzeciakowski J; Humphrey JD
    J Vasc Res; 2011; 48(6):495-504. PubMed ID: 21832839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progressive changes of elastic moduli of arterial wall and atherosclerotic plaque components during plaque development in human coronary arteries.
    Rezvani-Sharif A; Tafazzoli-Shadpour M; Avolio A
    Med Biol Eng Comput; 2019 Mar; 57(3):731-740. PubMed ID: 30374700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical Characterization of the Lamellar Structure of Human Abdominal Aorta in the Development of Atherosclerosis: An Atomic Force Microscopy Study.
    Rezvani-Sharif A; Tafazzoli-Shadpour M; Avolio A
    Cardiovasc Eng Technol; 2019 Mar; 10(1):181-192. PubMed ID: 30006817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating atherosclerotic vulnerable plaque rupture by modeling cross substitution of ApoE-/- mouse and human plaque components stiffnesses.
    Ohayon J; Mesnier N; Broisat A; Toczek J; Riou L; Tracqui P
    Biomech Model Mechanobiol; 2012 Jul; 11(6):801-13. PubMed ID: 21986797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing low levels of mechanical stress in aortic atherosclerotic lesions from apolipoprotein E-/- mice--brief report.
    Broisat A; Toczek J; Mesnier N; Tracqui P; Ghezzi C; Ohayon J; Riou LM
    Arterioscler Thromb Vasc Biol; 2011 May; 31(5):1007-10. PubMed ID: 21393579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Young's moduli of surface-bound liposomes by atomic force microscopy force measurements.
    Brochu H; Vermette P
    Langmuir; 2008 Mar; 24(5):2009-14. PubMed ID: 18198906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local axial compressive mechanical properties of human carotid atherosclerotic plaques-characterisation by indentation test and inverse finite element analysis.
    Chai CK; Akyildiz AC; Speelman L; Gijsen FJ; Oomens CW; van Sambeek MR; van der Lugt A; Baaijens FP
    J Biomech; 2013 Jun; 46(10):1759-66. PubMed ID: 23664315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization of the biochemical markers of atherosclerotic plaque with the use of Raman, IR and AFM.
    Marzec KM; Wrobel TP; Rygula A; Maslak E; Jasztal A; Fedorowicz A; Chlopicki S; Baranska M
    J Biophotonics; 2014 Sep; 7(9):744-56. PubMed ID: 24604883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous plaque rupture and secondary thrombosis in apolipoprotein E-deficient and LDL receptor-deficient mice.
    Calara F; Silvestre M; Casanada F; Yuan N; Napoli C; Palinski W
    J Pathol; 2001 Sep; 195(2):257-63. PubMed ID: 11592107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the nano-mechanical properties of healthy and atherosclerotic coronary arteries by atomic force microscopy.
    Savvopoulos F; Keeling MC; Carassiti D; Fogell NA; Patel MB; Naser J; Gavara N; de Silva R; Krams R
    J R Soc Interface; 2024 Feb; 21(211):20230674. PubMed ID: 38320600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of varied lipid core volume and fibrous cap thickness on stress distribution in carotid arterial plaques.
    Gao H; Long Q
    J Biomech; 2008 Oct; 41(14):3053-9. PubMed ID: 18786671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of two murine models of thrombosis induced by atherosclerotic plaque injury.
    Hechler B; Gachet C
    Thromb Haemost; 2011 May; 105 Suppl 1():S3-12. PubMed ID: 21479341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studying the mechanics of cellular processes by atomic force microscopy.
    Radmacher M
    Methods Cell Biol; 2007; 83():347-72. PubMed ID: 17613316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mouse models of plaque rupture.
    Matoba T; Sato K; Egashira K
    Curr Opin Lipidol; 2013 Oct; 24(5):419-25. PubMed ID: 23942269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smooth muscle cells healing atherosclerotic plaque disruptions are of local, not blood, origin in apolipoprotein E knockout mice.
    Bentzon JF; Sondergaard CS; Kassem M; Falk E
    Circulation; 2007 Oct; 116(18):2053-61. PubMed ID: 17938286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of mechanical properties of insulin crystals by atomic force microscopy.
    Guo S; Akhremitchev BB
    Langmuir; 2008 Feb; 24(3):880-7. PubMed ID: 18163652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of vulnerable plaque in a murine model of atherosclerosis with optical coherence tomography.
    Cilingiroglu M; Oh JH; Sugunan B; Kemp NJ; Kim J; Lee S; Zaatari HN; Escobedo D; Thomsen S; Milner TE; Feldman MD
    Catheter Cardiovasc Interv; 2006 Jun; 67(6):915-23. PubMed ID: 16602128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of cell Young's modulus of adherent cells probed by optical and magnetic tweezers: influence of cell thickness and bead immersion.
    KamgouƩ A; Ohayon J; Tracqui P
    J Biomech Eng; 2007 Aug; 129(4):523-30. PubMed ID: 17655473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques.
    Lee RT; Grodzinsky AJ; Frank EH; Kamm RD; Schoen FJ
    Circulation; 1991 May; 83(5):1764-70. PubMed ID: 2022029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.