BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 21296649)

  • 1. Aging effects on the control of grip force magnitude: an fMRI study.
    Noble JW; Eng JJ; Kokotilo KJ; Boyd LA
    Exp Gerontol; 2011 Jun; 46(6):453-61. PubMed ID: 21296649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential force scaling of fine-graded power grip force in the sensorimotor network.
    Keisker B; Hepp-Reymond MC; Blickenstorfer A; Meyer M; Kollias SS
    Hum Brain Mapp; 2009 Aug; 30(8):2453-65. PubMed ID: 19172654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential representation of dynamic and static power grip force in the sensorimotor network.
    Keisker B; Hepp-Reymond MC; Blickenstorfer A; Kollias SS
    Eur J Neurosci; 2010 Apr; 31(8):1483-91. PubMed ID: 20384781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of visual feedback on brain activation during motor tasks: an FMRI study.
    Noble JW; Eng JJ; Boyd LA
    Motor Control; 2013 Jul; 17(3):298-312. PubMed ID: 23761430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Segregated and overlapping neural circuits exist for the production of static and dynamic precision grip force.
    Neely KA; Coombes SA; Planetta PJ; Vaillancourt DE
    Hum Brain Mapp; 2013 Mar; 34(3):698-712. PubMed ID: 22109998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-dependent changes in the neural correlates of force modulation: an fMRI study.
    Ward NS; Swayne OB; Newton JM
    Neurobiol Aging; 2008 Sep; 29(9):1434-46. PubMed ID: 17566608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex motor task associated with non-linear BOLD responses in cerebro-cortical areas and cerebellum.
    Alahmadi AA; Samson RS; Gasston D; Pardini M; Friston KJ; D'Angelo E; Toosy AT; Wheeler-Kingshott CA
    Brain Struct Funct; 2016 Jun; 221(5):2443-58. PubMed ID: 25921976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased Ipsilateral M1 Activation after Incomplete Spinal Cord Injury Facilitates Motor Performance.
    Prak RF; Marsman JC; Renken R; Tepper M; Thomas CK; Zijdewind I
    J Neurotrauma; 2021 Nov; 38(21):2988-2998. PubMed ID: 34491111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor practice in a force modulation task in young and middle-aged adults.
    Godde B; Trautmann M; Erhard P; Voelcker-Rehage C
    J Electromyogr Kinesiol; 2018 Feb; 38():224-231. PubMed ID: 29310867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic causal modelling of EEG and fMRI to characterize network architectures in a simple motor task.
    Bönstrup M; Schulz R; Feldheim J; Hummel FC; Gerloff C
    Neuroimage; 2016 Jan; 124(Pt A):498-508. PubMed ID: 26334836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebellar and premotor activity during a non-fatiguing grip task reflects motor fatigue in relapsing-remitting multiple sclerosis.
    Svolgaard O; Andersen KW; Bauer C; Madsen KH; Blinkenberg M; Selleberg F; Siebner HR
    PLoS One; 2018; 13(10):e0201162. PubMed ID: 30356315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-related changes in grasping force modulation.
    Voelcker-Rehage C; Alberts JL
    Exp Brain Res; 2005 Sep; 166(1):61-70. PubMed ID: 16096780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional MRI of sensory motor cortex: comparison between finger-to-thumb and hand squeeze tasks.
    Khorrami MS; Faro SH; Seshadri A; Moonat S; Lidicker J; Hershey BL; Mohamed FB
    J Neuroimaging; 2011 Jul; 21(3):236-40. PubMed ID: 21255179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping grip-force related brain activity after a fatiguing motor task in multiple sclerosis.
    Svolgaard O; Winther Andersen K; Bauer C; Hougaard Madsen K; Blinkenberg M; Sellebjerg F; Roman Siebner H
    Neuroimage Clin; 2022; 36():103147. PubMed ID: 36030719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific Brain Reorganization Underlying Superior Upper Limb Motor Function After Spinal Cord Injury: A Multimodal MRI Study.
    Nakanishi T; Nakagawa K; Kobayashi H; Kudo K; Nakazawa K
    Neurorehabil Neural Repair; 2021 Mar; 35(3):220-232. PubMed ID: 33514276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human brain activity in the control of fine static precision grip forces: an fMRI study.
    Kuhtz-Buschbeck JP; Ehrsson HH; Forssberg H
    Eur J Neurosci; 2001 Jul; 14(2):382-90. PubMed ID: 11553288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aging effects on functional auditory and visual processing using fMRI with variable sensory loading.
    Cliff M; Joyce DW; Lamar M; Dannhauser T; Tracy DK; Shergill SS
    Cortex; 2013 May; 49(5):1304-13. PubMed ID: 22578707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of excitability ("inhibition") in the ipsilateral primary motor cortex is mirrored by fMRI signal decreases.
    Hamzei F; Dettmers C; Rzanny R; Liepert J; Büchel C; Weiller C
    Neuroimage; 2002 Sep; 17(1):490-6. PubMed ID: 12482101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical activity in precision- versus power-grip tasks: an fMRI study.
    Ehrsson HH; Fagergren A; Jonsson T; Westling G; Johansson RS; Forssberg H
    J Neurophysiol; 2000 Jan; 83(1):528-36. PubMed ID: 10634893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Older adults exhibit a more pronounced modulation of beta oscillations when performing sustained and dynamic handgrips.
    Xifra-Porxas A; Niso G; Larivière S; Kassinopoulos M; Baillet S; Mitsis GD; Boudrias MH
    Neuroimage; 2019 Nov; 201():116037. PubMed ID: 31330245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.