These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 21296762)
1. Specific regulation of pyrethrin biosynthesis in Chrysanthemum cinerariaefolium by a blend of volatiles emitted from artificially damaged conspecific plants. Kikuta Y; Ueda H; Nakayama K; Katsuda Y; Ozawa R; Takabayashi J; Hatanaka A; Matsuda K Plant Cell Physiol; 2011 Mar; 52(3):588-96. PubMed ID: 21296762 [TBL] [Abstract][Full Text] [Related]
2. Selective regulation of pyrethrin biosynthesis by the specific blend of wound induced volatiles in Tanacetum cinerariifolium. Sakamori K; Ono N; Ihara M; Suzuki H; Matsuura H; Tanaka K; Ohta D; Kanaya S; Matsuda K Plant Signal Behav; 2016; 11(4):e1149675. PubMed ID: 26918634 [TBL] [Abstract][Full Text] [Related]
3. Pyrethrin biosynthesis and its regulation in Chrysanthemum cinerariaefolium. Matsuda K Top Curr Chem; 2012; 314():73-81. PubMed ID: 22006239 [TBL] [Abstract][Full Text] [Related]
4. Biosynthesis of pyrethrin I in seedlings of Chrysanthemum cinerariaefolium. Matsuda K; Kikuta Y; Haba A; Nakayama K; Katsuda Y; Hatanaka A; Komai K Phytochemistry; 2005 Jul; 66(13):1529-35. PubMed ID: 15964038 [TBL] [Abstract][Full Text] [Related]
5. Microbial volatile emissions promote accumulation of exceptionally high levels of starch in leaves in mono- and dicotyledonous plants. Ezquer I; Li J; Ovecka M; Baroja-Fernández E; Muñoz FJ; Montero M; Díaz de Cerio J; Hidalgo M; Sesma MT; Bahaji A; Etxeberria E; Pozueta-Romero J Plant Cell Physiol; 2010 Oct; 51(10):1674-93. PubMed ID: 20739303 [TBL] [Abstract][Full Text] [Related]
6. Chrysanthemyl diphosphate synthase: isolation of the gene and characterization of the recombinant non-head-to-tail monoterpene synthase from Chrysanthemum cinerariaefolium. Rivera SB; Swedlund BD; King GJ; Bell RN; Hussey CE; Shattuck-Eidens DM; Wrobel WM; Peiser GD; Poulter CD Proc Natl Acad Sci U S A; 2001 Apr; 98(8):4373-8. PubMed ID: 11287653 [TBL] [Abstract][Full Text] [Related]
8. On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Loreto F; Barta C; Brilli F; Nogues I Plant Cell Environ; 2006 Sep; 29(9):1820-8. PubMed ID: 16913871 [TBL] [Abstract][Full Text] [Related]
9. Wounding-Induced VOC Emissions in Five Tropical Agricultural Species. Portillo-Estrada M; Okereke CN; Jiang Y; Talts E; Kaurilind E; Niinemets Ü Molecules; 2021 Apr; 26(9):. PubMed ID: 33946933 [TBL] [Abstract][Full Text] [Related]
10. Overexpression of chrysanthemyl diphosphate synthase (CDS) gene in Tagetes erecta leads to the overproduction of pyrethrin. Gupta V; Khan S; Verma RK; Shanker K; Singh SV; Rahman LU Transgenic Res; 2022 Dec; 31(6):625-635. PubMed ID: 36006545 [TBL] [Abstract][Full Text] [Related]
11. Intermittent exposure to traces of green leaf volatiles triggers the production of (Z)-3-hexen-1-yl acetate and (Z)-3-hexen-1-ol in exposed plants. Ozawa R; Shiojiri K; Matsui K; Takabayashi J Plant Signal Behav; 2013 Nov; 8(11):e27013. PubMed ID: 24301200 [TBL] [Abstract][Full Text] [Related]
12. Herbivore-induced volatiles from tea (Camellia sinensis) plants and their involvement in intraplant communication and changes in endogenous nonvolatile metabolites. Dong F; Yang Z; Baldermann S; Sato Y; Asai T; Watanabe N J Agric Food Chem; 2011 Dec; 59(24):13131-5. PubMed ID: 22077631 [TBL] [Abstract][Full Text] [Related]
13. Fusarium infection in maize: volatile induction of infected and neighboring uninfected plants has the potential to attract a pest cereal leaf beetle, Oulema melanopus. Piesik D; Lemńczyk G; Skoczek A; Lamparski R; Bocianowski J; Kotwica K; Delaney KJ J Plant Physiol; 2011 Sep; 168(13):1534-42. PubMed ID: 21492953 [TBL] [Abstract][Full Text] [Related]
15. Red:far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants. Kegge W; Ninkovic V; Glinwood R; Welschen RA; Voesenek LA; Pierik R Ann Bot; 2015 May; 115(6):961-70. PubMed ID: 25851141 [TBL] [Abstract][Full Text] [Related]
16. Using 'mute' plants to translate volatile signals. Paschold A; Halitschke R; Baldwin IT Plant J; 2006 Jan; 45(2):275-91. PubMed ID: 16367970 [TBL] [Abstract][Full Text] [Related]
17. Coexpression Analysis Identifies Two Oxidoreductases Involved in the Biosynthesis of the Monoterpene Acid Moiety of Natural Pyrethrin Insecticides in Xu H; Moghe GD; Wiegert-Rininger K; Schilmiller AL; Barry CS; Last RL; Pichersky E Plant Physiol; 2018 Jan; 176(1):524-537. PubMed ID: 29122986 [TBL] [Abstract][Full Text] [Related]
18. Analysis of insect-induced volatiles from rice. Zhao N; Zhuang X; Shrivastava G; Chen F Methods Mol Biol; 2013; 956():201-8. PubMed ID: 23135853 [TBL] [Abstract][Full Text] [Related]
19. The piercing-sucking herbivores Lygus hesperus and Nezara viridula induce volatile emissions in plants. Williams L; Rodriguez-Saona C; Paré PW; Crafts-Brandner SJ Arch Insect Biochem Physiol; 2005 Feb; 58(2):84-96. PubMed ID: 15660365 [TBL] [Abstract][Full Text] [Related]
20. Induction of volatile organic compounds in Triticum aestivum (wheat) plants following infection by different Rhizoctonia pathogens is species specific. Piesik D; Lemańczyk G; Bocianowski J; Buszewski B; Vidal S; Mayhew CA Phytochemistry; 2022 Jun; 198():113162. PubMed ID: 35278419 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]