These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 21296873)
1. A unified view of cystic fibrosis transmembrane conductance regulator (CFTR) gating: combining the allosterism of a ligand-gated channel with the enzymatic activity of an ATP-binding cassette (ABC) transporter. Kirk KL; Wang W J Biol Chem; 2011 Apr; 286(15):12813-9. PubMed ID: 21296873 [TBL] [Abstract][Full Text] [Related]
2. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps. Wei S; Roessler BC; Chauvet S; Guo J; Hartman JL; Kirk KL J Biol Chem; 2014 Jul; 289(29):19942-57. PubMed ID: 24876383 [TBL] [Abstract][Full Text] [Related]
3. ATP-independent CFTR channel gating and allosteric modulation by phosphorylation. Wang W; Wu J; Bernard K; Li G; Wang G; Bevensee MO; Kirk KL Proc Natl Acad Sci U S A; 2010 Feb; 107(8):3888-93. PubMed ID: 20133716 [TBL] [Abstract][Full Text] [Related]
4. The CFTR ion channel: gating, regulation, and anion permeation. Hwang TC; Kirk KL Cold Spring Harb Perspect Med; 2013 Jan; 3(1):a009498. PubMed ID: 23284076 [TBL] [Abstract][Full Text] [Related]
5. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia. Dong Q; Ernst SE; Ostedgaard LS; Shah VS; Ver Heul AR; Welsh MJ; Randak CO J Biol Chem; 2015 May; 290(22):14140-53. PubMed ID: 25887396 [TBL] [Abstract][Full Text] [Related]
6. Converting nonhydrolyzable nucleotides to strong cystic fibrosis transmembrane conductance regulator (CFTR) agonists by gain of function (GOF) mutations. Okeyo G; Wang W; Wei S; Kirk KL J Biol Chem; 2013 Jun; 288(24):17122-33. PubMed ID: 23620589 [TBL] [Abstract][Full Text] [Related]
7. Evolutionary and functional divergence between the cystic fibrosis transmembrane conductance regulator and related ATP-binding cassette transporters. Jordan IK; Kota KC; Cui G; Thompson CH; McCarty NA Proc Natl Acad Sci U S A; 2008 Dec; 105(48):18865-70. PubMed ID: 19020075 [TBL] [Abstract][Full Text] [Related]
8. An intrinsic adenylate kinase activity regulates gating of the ABC transporter CFTR. Randak C; Welsh MJ Cell; 2003 Dec; 115(7):837-50. PubMed ID: 14697202 [TBL] [Abstract][Full Text] [Related]
9. On the mechanism of gating defects caused by the R117H mutation in cystic fibrosis transmembrane conductance regulator. Yu YC; Sohma Y; Hwang TC J Physiol; 2016 Jun; 594(12):3227-44. PubMed ID: 26846474 [TBL] [Abstract][Full Text] [Related]
10. Gating of cystic fibrosis transmembrane conductance regulator chloride channels by adenosine triphosphate hydrolysis. Quantitative analysis of a cyclic gating scheme. Zeltwanger S; Wang F; Wang GT; Gillis KD; Hwang TC J Gen Physiol; 1999 Apr; 113(4):541-54. PubMed ID: 10102935 [TBL] [Abstract][Full Text] [Related]
11. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics. Zhou Z; Wang X; Liu HY; Zou X; Li M; Hwang TC J Gen Physiol; 2006 Oct; 128(4):413-22. PubMed ID: 16966475 [TBL] [Abstract][Full Text] [Related]
12. The gating of the CFTR channel. Moran O Cell Mol Life Sci; 2017 Jan; 74(1):85-92. PubMed ID: 27696113 [TBL] [Abstract][Full Text] [Related]
13. Altering intracellular pH reveals the kinetic basis of intraburst gating in the CFTR Cl Chen JH; Xu W; Sheppard DN J Physiol; 2017 Feb; 595(4):1059-1076. PubMed ID: 27779763 [TBL] [Abstract][Full Text] [Related]
14. Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle. Csanády L; Nairn AC; Gadsby DC J Gen Physiol; 2006 Nov; 128(5):523-33. PubMed ID: 17043148 [TBL] [Abstract][Full Text] [Related]
15. A stable ATP binding to the nucleotide binding domain is important for reliable gating cycle in an ABC transporter CFTR. Shimizu H; Yu YC; Kono K; Kubota T; Yasui M; Li M; Hwang TC; Sohma Y J Physiol Sci; 2010 Sep; 60(5):353-62. PubMed ID: 20628841 [TBL] [Abstract][Full Text] [Related]
16. Nonequilibrium gating of CFTR on an equilibrium theme. Jih KY; Hwang TC Physiology (Bethesda); 2012 Dec; 27(6):351-61. PubMed ID: 23223629 [TBL] [Abstract][Full Text] [Related]
17. Conformational changes in a pore-lining helix coupled to cystic fibrosis transmembrane conductance regulator channel gating. Beck EJ; Yang Y; Yaemsiri S; Raghuram V J Biol Chem; 2008 Feb; 283(8):4957-66. PubMed ID: 18056267 [TBL] [Abstract][Full Text] [Related]
18. Nonintegral stoichiometry in CFTR gating revealed by a pore-lining mutation. Jih KY; Sohma Y; Hwang TC J Gen Physiol; 2012 Oct; 140(4):347-59. PubMed ID: 22966014 [TBL] [Abstract][Full Text] [Related]
19. Exploiting species differences to understand the CFTR Cl- channel. Bose SJ; Scott-Ward TS; Cai Z; Sheppard DN Biochem Soc Trans; 2015 Oct; 43(5):975-82. PubMed ID: 26517912 [TBL] [Abstract][Full Text] [Related]
20. Vx-770 potentiates CFTR function by promoting decoupling between the gating cycle and ATP hydrolysis cycle. Jih KY; Hwang TC Proc Natl Acad Sci U S A; 2013 Mar; 110(11):4404-9. PubMed ID: 23440202 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]