BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 21297156)

  • 1. Phylogenomic analyses of the BARREN STALK1/LAX PANICLE1 (BA1/LAX1) genes and evidence for their roles during axillary meristem development.
    Woods DP; Hope CL; Malcomber ST
    Mol Biol Evol; 2011 Jul; 28(7):2147-59. PubMed ID: 21297156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The barren stalk2 Gene Is Required for Axillary Meristem Development in Maize.
    Yao H; Skirpan A; Wardell B; Matthes MS; Best NB; McCubbin T; Durbak A; Smith T; Malcomber S; McSteen P
    Mol Plant; 2019 Mar; 12(3):374-389. PubMed ID: 30690173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The bHLH protein ROX acts in concert with RAX1 and LAS to modulate axillary meristem formation in Arabidopsis.
    Yang F; Wang Q; Schmitz G; Müller D; Theres K
    Plant J; 2012 Jul; 71(1):61-70. PubMed ID: 22372440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic and physical interaction suggest that BARREN STALK 1 is a target of BARREN INFLORESCENCE2 in maize inflorescence development.
    Skirpan A; Wu X; McSteen P
    Plant J; 2008 Sep; 55(5):787-97. PubMed ID: 18466309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of barren stalk1 in the architecture of maize.
    Gallavotti A; Zhao Q; Kyozuka J; Meeley RB; Ritter MK; Doebley JF; Pè ME; Schmidt RJ
    Nature; 2004 Dec; 432(7017):630-5. PubMed ID: 15577912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development.
    Komatsu M; Maekawa M; Shimamoto K; Kyozuka J
    Dev Biol; 2001 Mar; 231(2):364-73. PubMed ID: 11237465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auxin signaling modules regulate maize inflorescence architecture.
    Galli M; Liu Q; Moss BL; Malcomber S; Li W; Gaines C; Federici S; Roshkovan J; Meeley R; Nemhauser JL; Gallavotti A
    Proc Natl Acad Sci U S A; 2015 Oct; 112(43):13372-7. PubMed ID: 26464512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aberrant spikelet and panicle1, encoding a TOPLESS-related transcriptional co-repressor, is involved in the regulation of meristem fate in rice.
    Yoshida A; Ohmori Y; Kitano H; Taguchi-Shiobara F; Hirano HY
    Plant J; 2012 Apr; 70(2):327-39. PubMed ID: 22136599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Divergent expression patterns of miR164 and CUP-SHAPED COTYLEDON genes in palms and other monocots: implication for the evolution of meristem function in angiosperms.
    Adam H; Marguerettaz M; Qadri R; Adroher B; Richaud F; Collin M; Thuillet AC; Vigouroux Y; Laufs P; Tregear JW; Jouannic S
    Mol Biol Evol; 2011 Apr; 28(4):1439-54. PubMed ID: 21135149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Step Regulation of LAX PANICLE1 Protein Accumulation in Axillary Meristem Formation in Rice.
    Oikawa T; Kyozuka J
    Plant Cell; 2009 Apr; 21(4):1095-108. PubMed ID: 19346465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular cloning, phylogenetic analysis, and expression patterns of LATERAL SUPPRESSOR-LIKE and REGULATOR OF AXILLARY MERISTEM FORMATION-LIKE genes in sunflower (Helianthus annuus L.).
    Fambrini M; Salvini M; Pugliesi C
    Dev Genes Evol; 2017 Mar; 227(2):159-170. PubMed ID: 28035495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems.
    Tabuchi H; Zhang Y; Hattori S; Omae M; Shimizu-Sato S; Oikawa T; Qian Q; Nishimura M; Kitano H; Xie H; Fang X; Yoshida H; Kyozuka J; Chen F; Sato Y
    Plant Cell; 2011 Sep; 23(9):3276-87. PubMed ID: 21963665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The multifaceted roles of FLOWERING LOCUS T in plant development.
    Pin PA; Nilsson O
    Plant Cell Environ; 2012 Oct; 35(10):1742-55. PubMed ID: 22697796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of auxin transport during inflorescence development in maize (Zea mays, Poaceae).
    Wu X; McSteen P
    Am J Bot; 2007 Nov; 94(11):1745-55. PubMed ID: 21636370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein-protein interaction domains after major gene duplication events.
    Hernández-Hernández T; Martínez-Castilla LP; Alvarez-Buylla ER
    Mol Biol Evol; 2007 Feb; 24(2):465-81. PubMed ID: 17135333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The vascular plants: open system of growth.
    Basile A; Fambrini M; Pugliesi C
    Dev Genes Evol; 2017 Mar; 227(2):129-157. PubMed ID: 28214944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar.
    Zhang X; Zong J; Liu J; Yin J; Zhang D
    J Integr Plant Biol; 2010 Nov; 52(11):1016-26. PubMed ID: 20977659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BARREN STALK FASTIGIATE1 is an AT-hook protein required for the formation of maize ears.
    Gallavotti A; Malcomber S; Gaines C; Stanfield S; Whipple C; Kellogg E; Schmidt RJ
    Plant Cell; 2011 May; 23(5):1756-71. PubMed ID: 21540434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms and function of flower and inflorescence reversion.
    Tooke F; Ordidge M; Chiurugwi T; Battey N
    J Exp Bot; 2005 Oct; 56(420):2587-99. PubMed ID: 16131510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Four TFL1/CEN-like genes on distinct linkage groups show different expression patterns to regulate vegetative and reproductive development in apple (Malus x domestica Borkh.).
    Mimida N; Kotoda N; Ueda T; Igarashi M; Hatsuyama Y; Iwanami H; Moriya S; Abe K
    Plant Cell Physiol; 2009 Feb; 50(2):394-412. PubMed ID: 19168455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.