BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 21297235)

  • 21. Packing C60 in boron nitride nanotubes.
    Mickelson W; Aloni S; Han WQ; Cumings J; Zettl A
    Science; 2003 Apr; 300(5618):467-9. PubMed ID: 12702871
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of boron nitride nanotubes by boron ink annealing.
    Li LH; Chen Y; Glushenkov AM
    Nanotechnology; 2010 Mar; 21(10):105601. PubMed ID: 20154372
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of boron nitride nanotubes from unprocessed colemanite.
    Kalay S; Yilmaz Z; Culha M
    Beilstein J Nanotechnol; 2013; 4():843-51. PubMed ID: 24367753
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrogen-catalyzed, pilot-scale production of small-diameter boron nitride nanotubes and their macroscopic assemblies.
    Kim KS; Kingston CT; Hrdina A; Jakubinek MB; Guan J; Plunkett M; Simard B
    ACS Nano; 2014 Jun; 8(6):6211-20. PubMed ID: 24807071
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Excitons at the B K edge of boron nitride nanotubes probed by x-ray absorption spectroscopy.
    Pacilé D; Papagno M; Skála T; Matolín V; Sainsbury T; Ikuno T; Okawa D; Zettl A; Prince KC
    J Phys Condens Matter; 2010 Jul; 22(29):295301. PubMed ID: 21399297
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isolation of individual boron nitride nanotubes via peptide wrapping.
    Gao Z; Zhi C; Bando Y; Golberg D; Serizawa T
    J Am Chem Soc; 2010 Apr; 132(14):4976-7. PubMed ID: 20297821
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation of boron nitride nanotubes aqueous dispersions for biological applications.
    Ciofani G; Raffa V; Menciassi A; Dario P
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6223-31. PubMed ID: 19205187
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bulk synthesis, growth mechanism and properties of highly pure ultrafine boron nitride nanotubes with diameters of sub-10 nm.
    Huang Y; Lin J; Tang C; Bando Y; Zhi C; Zhai T; Dierre B; Sekiguchi T; Golberg D
    Nanotechnology; 2011 Apr; 22(14):145602. PubMed ID: 21346299
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Atomic structures of multi-walled boron nitride nanohorns.
    Nishiwaki A; Oku T
    J Electron Microsc (Tokyo); 2005; 54 Suppl 1():i9-14. PubMed ID: 16157650
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct Observation of Inner-Layer Inward Contractions of Multiwalled Boron Nitride Nanotubes upon in Situ Heating.
    Li Z; Li ZA; Sun S; Zheng D; Wang H; Tian H; Yang H; Bai X; Li J
    Nanomaterials (Basel); 2018 Feb; 8(2):. PubMed ID: 29401705
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical properties of bamboo-like boron nitride nanotubes by in situ TEM and MD simulations: strengthening effect of interlocked joint interfaces.
    Tang DM; Ren CL; Wei X; Wang MS; Liu C; Bando Y; Golberg D
    ACS Nano; 2011 Sep; 5(9):7362-8. PubMed ID: 21823625
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxygen adsorption characteristics on hybrid carbon and boron-nitride nanotubes.
    Liu H; Turner CH
    J Comput Chem; 2014 May; 35(14):1058-63. PubMed ID: 24659221
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transformation from chemisorption to physisorption with tube diameter and gas concentration: computational studies on NH3 adsorption in BN nanotubes.
    Li Y; Zhou Z; Zhao J
    J Chem Phys; 2007 Nov; 127(18):184705. PubMed ID: 18020656
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electronic structure analyses of BN network materials using high energy-resolution spectroscopy methods based on transmission electron microscopy.
    Terauchi M
    Microsc Res Tech; 2006 Jul; 69(7):531-7. PubMed ID: 16718665
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aqueous noncovalent functionalization and controlled near-surface carbon doping of multiwalled boron nitride nanotubes.
    Wang W; Bando Y; Zhi C; Fu W; Wang E; Golberg D
    J Am Chem Soc; 2008 Jul; 130(26):8144-5. PubMed ID: 18540601
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electron-beam-induced substitutional carbon doping of boron nitride nanosheets, nanoribbons, and nanotubes.
    Wei X; Wang MS; Bando Y; Golberg D
    ACS Nano; 2011 Apr; 5(4):2916-22. PubMed ID: 21425863
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physisorption vs. chemisorption of probe molecules on boron nitride nanomaterials: the effect of surface curvature.
    Rimola A; Sodupe M
    Phys Chem Chem Phys; 2013 Aug; 15(31):13190-8. PubMed ID: 23824299
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro investigation of the cellular toxicity of boron nitride nanotubes.
    Horváth L; Magrez A; Golberg D; Zhi C; Bando Y; Smajda R; Horváth E; Forró L; Schwaller B
    ACS Nano; 2011 May; 5(5):3800-10. PubMed ID: 21495683
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Boron nitride nanotubes and nanosheets.
    Golberg D; Bando Y; Huang Y; Terao T; Mitome M; Tang C; Zhi C
    ACS Nano; 2010 Jun; 4(6):2979-93. PubMed ID: 20462272
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Decoration of nitrogen vacancies by oxygen atoms in boron nitride nanotubes.
    Petravic M; Peter R; Kavre I; Li LH; Chen Y; Fan LJ; Yang YW
    Phys Chem Chem Phys; 2010 Dec; 12(47):15349-53. PubMed ID: 20967376
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.